connhectSDK

Feb 24, 2023

DISCOVER

One SDK Eight Media Platforms 1
Beam Web Apps to the Big Screen 3
Beam Photos, Videos, Audio, and YouTube to the Big Screen 5
Mirror Screen and Camera Preview to the Big Screen 7
Promote Your TV App 9
5.1 Connect SDK OVEIVIEW v v vttt ittt e e e e e e e e e e 9
52 USECaSES . « v v v v v e e e e e e e e e e e 10
5.3 Supported features L L L e e e e e e e e e 11
54 Beamlcon e e e e 15
5.5 Sample APPS . - . o o i e e e 16
5.6 Testing & Debugging e 16
5.7 Download Connect SDK e e e e e 17
5.8 Getting Started e e e e e e e e e e e 18
5.9 Developer Guides L e 22
5.10 APIReferences o e e 46
5.11 Getting Started e e e e 251
5.12 Developer Guides L e e e e e e e e e e e 254
5.13 APIReferences v v i i e e e e e e e e e e e e 260
5.14 Getting Started L L e e e e e e e e e e 289
5.15 Developer Guides e 293
5.16 APIReferences v o i it e e e e e e e e e e e e e e 315
SA7 TV IWED APPS .« o o o o e 393
508 Release o e 397
509 Article e e 400
5.20 Terms and Conditions o ..o e e e e e e e e 403
521 Cookie Policy e 404
522 CONtaCt . . v v v v e 407

CHAPTER 1

One SDK Eight Media Platforms

Connect SDK is an open source framework that connects your mobile apps with multiple media device platforms.

https://connectsdk.readthedocs.io/en/latest/?badge=latest

connectSDK

2 Chapter 1. One SDK Eight Media Platforms

CHAPTER 2

Beam Web Apps to the Big Screen

Integrate Connect SDK into your mobile web app, and extend the viewing experience onto the big screen.

connectSDK

4 Chapter 2. Beam Web Apps to the Big Screen

CHAPTER 3

Beam Photos, Videos, Audio, and YouTube to the Big Screen

Integrate Connect SDK into your mobile app to beam media across multiple platforms onto the big screen.

connectSDK

6 Chapter 3. Beam Photos, Videos, Audio, and YouTube to the Big Screen

CHAPTER 4

Mirror Screen and Camera Preview to the Big Screen

Integrate Connect SDK into your mobile app on Android and iOS platforms for screen mirroring and remote camera,
which mirrors the screen and camera preview onto the big screen.

connectSDK

8 Chapter 4. Mirror Screen and Camera Preview to the Big Screen

CHAPTER B

Promote Your TV App

Now that you created a great TV app, promote it through your mobile app using Connect SDK.

5.1 Connect SDK Overview

Connect SDK is an open source framework that connects your mobile apps with multiple TV platforms. Because most
TV platforms support a variety of protocols, Connect SDK integrates and abstracts the discovery and connectivity
between all supported protocols.

To discover supported platforms and protocols, Connect SDK uses SSDP to discover services such as DIAL, DLNA,
UDAP, and Roku’s External Control Guide (ECG). Connect SDK also supports ZeroConf to discover devices such as
Chromecast and Apple TV. Even while supporting multiple discovery protocols, Connect SDK is able to generate one
unified list of discovered devices from the same network.

To communicate with discovered devices, Connect SDK integrates support for protocols such as DLNA, DIAL, SSAP,
ECG, AirPlay, Chromecast, UDAP, and webOS second screen protocol. Connect SDK intelligently picks which
protocol to use depending on the feature being used.

For example, when connecting to a 2013 LG Smart TV, Connect SDK uses DLNA for media playback, DIAL for
YouTube launching, and UDAP for system controls. On Roku, media playback and system controls are made avail-
able through ECG, and YouTube launching through DIAL. On Chromecast, media playback occurs through the Cast
protocol and YouTube is launched via DIAL.

To support the aforementioned use case without Connect SDK, a developer would need to implement DIAL, ECG,
Chromecast, and DLNA in their app. With Connect SDK, discovering the three devices is handled for you. Further-
more, the method calls between each protocol is abstracted. That means you can use one method call to beam a video
to Roku, 3 generations of LG Smart TVs, Apple TV, and Chromecast.

connectSDK

5.2 Use Cases

5.2.1 Web App Beaming

Using HTMLS and other web technologies, the capabilities and opportunity are nearly limitless.

Example: Chromecast apps, which are essentially web apps, are good examples of some possibilities of integrating
Connect SDK. Click here for a list of existing Chromecast apps .

Web App beaming is supported by Connect SDK v1.3 on webOS, Apple TV, and Chromecast.

5.2.2 Photo, Video & YouTube Beaming

Integrate Connect SDK into any mobile app that contains a photo, a video or YouTube video and give users the option
to beam and view their content on a larger, more social display for a more engaging experience.

Example: Trulia’s mobile app shows homes for sale. Instead of crowding over a screen or passing a phone around to
view the homes with friends and family, the user simply beams the photos directly to the Smart TV screen allowing
everyone in the room to share in the experience.

Example: The Verge app embeds product reviews, interviews and YouTube videos within their articles. With Connect
SDK integrated in the app, users could beam the content onto a Smart TV or TV set top box sharing content with
co-workers.

YouTube beaming is supported by Connect SDK v1.3 on webOS, LG Smart TV ‘13, LG Smart TV ‘12, Roku 3, Chrome-
cast, Fire TV, and many DIAL supporting devices. Photo and Video beaming is supported by Connect SDK vI1.3 on
webOS, LG Smart TV ‘13, LG Smart TV ‘12, Roku, Apple TV, and Chromecast.

5.2.3 Screen and Camera Preview Mirroring

Integrate Connect SDK into any mobile app and let users to mirror their screen and camera preview of the mobile
device on the TV for more valuable experience.

Screen Mirroring Example: The Movie Box app is a service that provides video on mobile. With Connect SDK
integrated in the app, the user experience can be expanded to a larger TV screen. This allows the app users to watch a
movie with their family on the large screen on their TV.

Remote Camera Example: Tom’s TV doesn’t have a built-in camera, so he can’t make video calls with the TV. By
streaming the camera to the TV with the Connect SDK, video calls can be made on the large TV without a built-in
camera or USB camera.

Screen Mirroring and Remote Camera are supported on LG Smart TV 22.

5.2.4 Promote Your TV App

If you are going to invest in building a TV app, promote its availability using your mobile app. Using Connect SDK,
your mobile app can detect if a specific device is on the same network and prompt the user to install your app. If
the user accepts, Connect SDK launches the device’s app store deep-linked to your specific app where the user can
complete the download and installation.

Example: Crunchyroll, a leading Japanese Anime and Asian media video service, has a channel on Roku. By inte-
grating Connect SDK, they could detect a Roku device on the same network and promote their channel’s availability
within their app.

This use case is supported by Connect SDK vi.3 on webOS, LG Smart TV ‘13, and Roku.

10 Chapter 5. Promote Your TV App

https://store.google.com/product/chromecast_apps

connectSDK

5.2.5 Control Your TV App

Own your user’s experience by allowing users to control the TV app using a mobile app. Everything from keyboard
input, app navigation, even logging-in can be made easier using your mobile app.

Example: Vudu could easily integrate keyboard and mouse control allowing their users to select videos and enter
credit card information using Vudu mobile app. Vudu could even pass user credentials from the mobile app to the TV
app eliminating the need to login on the TV if the user is already logged in on the mobile app.

5.2.6 Hybrid

Of course, developers can provide different experience depending on each platform. Some of the newer platforms like
webOS and Chromecast offer newer features

5.3 Supported features

The chart below shows which APIs are available for each device.

5.3.1 Connect SDK v1.6.0

To be updated

5.3. Supported features 11

connectSDK

Apps
Feature LG LG Chrome-| Ap- | Roku Fire | LG LG DIAL Sonos Xbox LG
Smart | Smart | cast ple TV | Smart | Smart Speake®ne| Music
we- we- & An- | TV TV TV Flow
bOS bOS droid 13 12 Speaket
22 ‘14 TV
Beam Yes Yes Yes Yes | No | No | No No No | No No | No
Web App
Launch Yes Yes Yes No | Yes | Yes | Yes. Yes. Yes | No No | No
My app Pair- Pair-
ing ing
is re- | is re-
quired | quired
Get list of | Yes Yes No No | Yes | No | Yes. Yes. No | No No | No
installed Pair- Pair-
apps ing ing
is re- | is re-
quired | quired
Mobile Yes Yes Yes Yes | No | No | No No No | No No | No
app to
TV app
messag-
ing
Deeplink | Yes Yes No No | Yes | No | Yes No No | No No | No
into app
store
Beam Yes Yes Yes No | Yes | Yes | Yes Yes Yes | No Yes | No
Youtube
Screen Yes No No No | No | No | No No No | No No | No
Mirroring
Remote Yes No No No | No | No | No No No | No No | No
Camera

12 Chapter 5. Promote Your TV App

connectSDK

Media

Feature | LG Chrome- | Ap- | Roku Fire | LG LG DIAL Sonos | Xbox| LG Mu-
Smart cast & | ple TV | Smart | Smart SpeakerOne | sic Flow
webOS | Android TV TV TV Speaker
‘14 TV 13 12

Beam Yes Yes Yes | Yes | Yes | Yes Yes No | No Yes | No

video

Beam Yes Yes Yes | Yes | Yes | Yes Yes No | Yes Yes | Yes

audio

Beam Yes Yes Yes | Yes | Yes | Yes Yes No | No Yes | No

photo

Media Yes Yes Yes | Yes | Yes | Yes Yes No | No Yes | No

pause

Media Yes Yes Yes | Yes | Yes | Yes Yes No | Yes Yes | Yes

stop

Get me- | Yes Yes Yes | No | Yes | Yes Yes No | Yes Yes | Yes

dia dura-

tion

Seek Yes Yes Yes | No | Yes | Yes Yes No | Yes Yes | Yes

media

Play Yes Yes No | No | Yes | Yes Yes No | Yes Yes | Yes

State

Sub-

scription

Get Me- | No Yes No | No | Yes | Yes Yes No | Yes Yes | Yes

dia Info

Media No Yes No | No | No | Yes Yes No | Yes Yes | Yes

Info Sub-

scription

SRT No No No | No | No | Yes Yes No | No No | No

subtitles

WebVTT | Yes Yes No | No | Yes | No No No | No No | No

subtitles

5.3. Supported features

13

connectSDK

System Controls

Fea- LG Chrome- | Ap- | Roku Fire | LG LG DIAL Sonos| Xbox| LG Mu-
ture Smart cast & | ple TV | Smart Smart SpeakerOne | sic Flow
webOS | Android TV TV 13 TV 12 Speaker
‘14 TV
Show | Yes. No No | No | No | No No No | No No | No
toast | Pair-
alert ing s
required
Key- Yes. No No | Yes | No | Yes. Yes. No | No No | No
board | Pair- Pair- Pair-
input | ing is ing is | ing s
required required | required
5-way | Yes. No No | Yes | No | Yes. Yes. No | No No | No
con- Pair- Pair- Pair-
trols ing s ing is | ing s
required required | required
Mouse | Yes. No No | No | No | Yes. Yes. No | No No | No
con- Pair- Pair- Pair-
trols ing s ing is | ing s
required required | required
Input Yes No No | No | No | Yes. Yes. No | No No | No
selec- Pair- Pair-
tor ing is | ing s
required | required
Power | Yes. No No | No | No | Yes. Yes. No | No No | No
off Pair- Pair- Pair-
de- ing s ing is | ing s
vice required required | required

14 Chapter 5. Promote Your TV App

connectSDK

TV Controls
Feature | LG Chrome- | Ap- | Roku Fire | LG LG DIAL Sonos| Xbox LG Mu-
Smart cast & | ple TV | Smart Smart SpeakerOne | sic Flow
webOS | Android TV TVH13 | TVH2 Speaker
‘14 TV
Volume | Yes Yes No | No | No | Yes. Yes. No | Yes Yes | Yes
up/down Pair- Pair-
ing is | ing is
required | required
Set vol- | Yes Yes No | No | No | No Yes. No | Yes Yes | Yes
ume Pair-
ing is
required
Tuner Yes. No No | No | No | Yes. Yes. No | No No | No
channel | Pair- Pair- Pair-
control | ing s ing is | ing is
required required | required
Volume | Yes Yes No | No | No | Yes. Yes. No | Yes Yes | Yes.
Sub- Pair- Pair- Pairing is
scrip- ing is | ing is required
tion required | required
Playlist
Fea- | LG Chrome- Ap- | Roku Fire | LG LG DIAL Sonos | Xbox| LG Music
ture Smart cast & | ple TV | Smart | Smart Speaker One | Flow
webOS | Android TV TVH3 | TV12 Speaker
‘14 TV
Beam | Yes No No | No | No | No No No | Yes No No
Playlist
Play Yes No No | No | No | No No No | Yes No | No
Next
Play Yes No No | No | No | No No No | Yes No | No
Previ-
ous
Jump | Yes No No | No | No | No No No | Yes No No
To
Track

5.4 Beam Icon

Connect SDK is about delivering a multi-device experience across multiple platforms. Our goal from the beginning
was to solve a fragmentation problem. Therefore, instead of creating another “beam” icon and expecting users to learn
one more visual artifact - we recommend you use one of the many great icons already available. Google’s Cast icon
is becoming widely recognized for this use case, so consider using it. Please make sure you comply with any rules set
forth by the icon creator.

5.4. Beam Icon 15

connectSDK

5.5 Sample Apps

API Sampler
— Android API Sampler
— Cordova API Sampler
— i0S API Sampler
* Media Sampler
— Android Media Sampler
— Cordova Media Sampler
— 10S Media Sampler
* Web App Sampler
— Android Web App Sampler
— Cordova Web App Sampler
— 10S Web App Sampler
* Screen Mirroring Sampler
— Android Screen Mirroring Sampler
— Android Dual Screen Sampler
— 10S Screen Mirroring Sampler
* Remote Camera Sampler
— Android Remote Camera Sampler

— i0S Remote Camera Sampler

5.6 Testing & Debugging

Due to the abstracted nature of Connect SDK, it may not be necessary for you to have a suite of test devices. For many
use cases, testing on one supported platform can be sufficient.

However, depending on your application and use case, it may be advisable to test each platform before you release
your application. For example, while video beaming is abstracted, each platform supports different video protocols
and you should make sure that your specific app’s video content is playable on your desired platform.

5.6.1 webOS

The webOS TV emulator is currently available through the LG developer portal, download here.

The emulator is limited in that it cannot download/install apps from LG Store. This will limit your testing on the
emulator to web app & media support. Note that the emulator’s network setting has to be set to “Bridged Adapter”
mode for the Emulator to be discoverable.

If you have need of production hardware, the line of LG Smart TVs with webOS are currently available from major
electronic retailers.

To test the Screen Mirroring or Remote Camera feature, we recommend you purchase the targeted device (webOS TV
22).

16 Chapter 5. Promote Your TV App

https://github.com/ConnectSDK/Connect-SDK-Android-API-Sampler
https://github.com/ConnectSDK/Connect-SDK-Cordova-API-Sampler
https://github.com/ConnectSDK/Connect-SDK-iOS-API-Sampler
https://github.com/ConnectSDK/Simple-Photo-Share-Android
https://github.com/ConnectSDK/Simple-Photo-Share-Cordova
https://github.com/ConnectSDK/Simple-Photo-Share-iOS
https://github.com/ConnectSDK/Web-App-Sampler-Android
https://github.com/ConnectSDK/Web-App-Sampler-Cordova
https://github.com/ConnectSDK/Web-App-Sampler-iOS
https://github.com/ConnectSDK/LGCast-Android-API-Sampler/tree/master/ScreenMirroring-Sampler
https://github.com/ConnectSDK/LGCast-Android-API-Sampler/tree/master/DualScreen-Sampler
https://github.com/ConnectSDK/LGCast-iOS-API-Sampler/tree/master/ScreenMirroring-Sampler
https://github.com/ConnectSDK/LGCast-Android-API-Sampler/tree/master/RemoteCamera-Sampler
https://github.com/ConnectSDK/LGCast-iOS-API-Sampler/tree/master/RemoteCamera-Sampler
https://webostv.developer.lge.com/develop/tools/emulator-installation

connectSDK

5.6.2 Chromecast

To test your application with a Chromecast device, you need to purchase a Chromecast dongle.

5.6.3 2012 and 2013 LG Smart TVs

To test your application with LG 2012 and 2013 Smart TVs, we recommend you purchase the targeted device. The
emulators available here are meant to be used exclusively for first-screen TV App development.

5.6.4 Roku

In order to test your application, you should purchase a Roku device. In general, Roku devices have the same features
across all models, however Roku 3 and Roku Streaming Stick have a larger app catalog, including support for YouTube
videos.

5.6.5 Fire TV

To test your application with Fire TV, you should purchase a Fire TV device.

5.6.6 Apple TV

To test your application with Apple TV, you should purchase an Apple TV device.

5.7 Download Connect SDK

Connect SDK is an open source framework licensed under the Apache License, Version 2.0.

5.7.1 Connect SDK v1.6.0
iOS

¢ Git: Connect-SDK-10S

* Getting Started: Serup Instructions | Discover and Connect to Device
Android

¢ Git: Connect-SDK-Android

* Getting Started: Serup Instructions | Discover & Connect to Device
Cordova

* Git: Connect-SDK-Cordova-Plugin

* Getting Started: Setup Instructions | Connect Your Cordova App

5.7. Download Connect SDK 17

https://webostv.developer.lge.com/more/netcast/sdk-overview
http://www.apache.org/licenses/LICENSE-2.0.html
https://github.com/ConnectSDK/Connect-SDK-iOS/tree/1.6.0
https://github.com/ConnectSDK/Connect-SDK-Android/tree/1.6.0
https://github.com/ConnectSDK/Connect-SDK-Cordova-Plugin/tree/1.6.0

connectSDK

5.8 Getting Started

5.8.1 Modularization
Structure

The Connect SDK repositories are adopting a modular approach with 1.4.0 release. Our aim is to provide flexibility to
the developers to be able pick and choose between the various devices. Currently you can choose whether to include
Google Cast and Fire TV devices or not. We plan to include more device options in the upcoming releases.

The Connect SDK is split into modules with the help of git submodules. There are two options:

1. The full project (Connect-SDK-iOS and Connect-SDK-Android) includes three submodules: core, google-cast, and
firetv and thus provides the full feature set. The latter submodules are located in the modules directory.

2. The lite project (Connect-SDK-iOS-Lite and Connect-SDK-Android-Lite) includes the core submodule only, there-
fore there is no need to download any third-party dependencies.

Please refer to the figure below displaying dependencies between different modules and libraries (for iOS and An-
droid).

Components with a light green background are external dependencies. The dashed lines show the submodule links,
whereas the solid lines depict build and/or runtime dependencies.

Standard setup
1

L L | google-cast Play services library
1
I
1
i
|
! v7 media router library
|
i
v l

1 1

core —> Java-Websocket v7 app compat library
A
1
1
1
1
1

lite

Lite setup

Fig. 1: Figure 1. Android SDK Component Diagram (showing Google Cast submodule as an example)

Links to the repositories are provided in the next table:

18 Chapter 5. Promote Your TV App

https://github.com/ConnectSDK
https://developers.google.com/cast/
https://developer.amazon.com/apps-and-games/fire-tv
https://git-scm.com/book/en/v2/Git-Tools-Submodules

connectSDK

Table 1: Table 1. Links to the repositories of Android

Module Link

full https://github.com/ConnectSDK/Connect-SDK- Android

lite https://github.com/ConnectSDK/Connect-SDK- Android-Lite

core https://github.com/ConnectSDK/Connect-SDK-Android-Core
google-cast | https://github.com/ConnectSDK/Connect-SDK-Android-Google-Cast
firetv https://github.com/ConnectSDK/Connect-SDK- Android-Fire TV

Usage instructions can be found in the full README or lite README.

Contributing

Since the source code is split between three repositories now (in the full version, whereas lite has only two), contribut-
ing is a bit more involved now. If you add a new feature across all the modules, you will have to create two GitHub
pull requests, one for each module. Our team will check the code and merge the changes into the submodules, then
update the full and lite repositories (as those just keep the project and track commits from the submodules). If you
have a simpler contributing workflow in mind, please let us know.

5.8.2 Setup Instructions

Dependencies

This project has the following dependencies, some of which require manual setup. If you would like to use a version
of the SDK which has no manual setup, consider using the lite version of the SDK. This project can be built in Android
Studio or directly with Gradle. Eclipse IDE is not supported since 1.5.0 version.

This project has the following dependencies.

* Connect-SDK-Android-Core submodule
— Requires Java-WebSocket library
— Requires jmDNS library

e Connect-SDK-Android-Google-Cast submodule
— Requires GoogleCast.framework

e Connect-SDK-Android-FireTV submodule
— Requires Amazon Fling SDK

Setup Connect SDK in Android Studio

Edit your project’s build.gradle to add this in the “dependencies” section.

allprojects {
repositories {
google ()
jcenter ()
maven { url "https://Jjitpack.io" }

(continues on next page)

5.8. Getting Started 19

https://github.com/ConnectSDK/Connect-SDK-Android
https://github.com/ConnectSDK/Connect-SDK-Android-Lite
https://github.com/ConnectSDK/Connect-SDK-Android-Core
https://github.com/ConnectSDK/Connect-SDK-Android-Google-Cast
https://github.com/ConnectSDK/Connect-SDK-Android-FireTV
https://github.com/ConnectSDK/Connect-SDK-iOS/blob/master/README.md
https://github.com/ConnectSDK/Connect-SDK-iOS-Lite/blob/master/README.md
mailto:developer@lge.com
https://github.com/ConnectSDK/Connect-SDK-Android-Lite
https://github.com/ConnectSDK/Connect-SDK-Android-Core
https://github.com/TooTallNate/Java-WebSocket
https://github.com/jmdns/jmdns
https://github.com/ConnectSDK/Connect-SDK-Android-Google-Cast
https://developers.google.com/cast
https://github.com/ConnectSDK/Connect-SDK-Android-FireTV

connectSDK

(continued from previous page)

/S

dependencies {

Y
implementation 'com.github.ConnectSDK:Connect-SDK-Android:master—-SNAPSHOT'

Setup Connect SDK in Android Studio from sources

1. Open your terminal and execute these commands
* cd your_project_folder
* git clone https://github.com/ConnectSDK/Connect-SDK-Android.git
¢ cd Connect-SDK-Android
e git submodule init
e git submodule update

2. On the root of your project directory create/modify the settings.gradle file. It should contain something like the
following:

include ':app', ':Connect-SDK-Android'

3. Edit your project’s build.gradle to add this in the “dependencies” section:

dependencies {
/...
implementation project (':Connect-SDK-Android')

}

4. Sync project with gradle files

5. Add permissions to your manifest

Permissions to include in manifest

* Required for SSDP & Chromecast/Zeroconf discovery
— android.permission.INTERNET
— android.permission.CHANGE_WIFI_MULTICAST_STATE
* Required for interacting with devices
— android.permission.ACCESS_NETWORK_STATE
— android.permission.ACCESS_WIFI_STATE
* Required for storing device pairing information
— android.permission.WRITE_EXTERNAL_STORAGE
* Required for Screen Mirroring and Remote Camera
— android.permission.RECORD_AUDIO

— android.permission.FOREGROUND_SERVICE

20 Chapter 5. Promote Your TV App

https://github.com/ConnectSDK/Connect-SDK-Android.git

connectSDK

— android.permission.CAMERA

<uses-permission android:name="android.permission.INTERNET"/>

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>
<uses-permission android:name="android.permission.CHANGE_WIFI_MULTICAST_STATE"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.RECORD_AUDIO" />
<uses-permission android:name="android.permission.FOREGROUND_SERVICE" />
<uses-permission android:name="android.permission.CAMERA" />

Metadata for application tag

This metadata tag is necessary to enable Chromecast support.

5.8.3 Discover & Connect to Device

Initial setup

Your view controller should implement delegate/listener methods for Connect SDK’s DevicePicker and Con-
nectableDevice classes. These methods will give you the ability to respond to device selection, ready, disconnect,
and error states.

public class MainActivity extends Activity implements ConnectableDevicelListener {

}

It is helpful to retain local references to both the DiscoveryManager and the ConnectableDevice objects. In most use
cases, these two classes will serve to provide most of the functionality required.

As soon as your app loads, you should instantiate the DiscoveryManager singleton and start discovery. As different
devices can take a wide range of time to be discovered, it is recommended that discovery start as soon as possible after
app launch.

private DiscoveryManager mDiscoveryManager;
private ConnectableDevice mDevice;

This can be initialized in the the Application class or in your Activity. You should always use getApplicationContext()
since the DiscoveryManager will likely hold onto this object longer than the life of a single Activity.

@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

DiscoveryManager.init (getApplicationContext ());
// This step could even happen in your app's delegate

mDiscoveryManager = DiscoveryManager.getlInstance();
mDiscoveryManager.start () ;

Discovery & device selection

In many cases, your user will want to select one device from a list of many. You should present the DevicePicker to the
user to receive their selection. The DevicePicker includes a dynamic listing of all devices that have been discovered

5.8. Getting Started 21

connectSDK

on the network.

private void showImage () {
DevicePicker devicePicker = new DevicePicker (this);
AlertDialog dialog = devicePicker.getPickerDialog("Show Image", selectDevice);
dialog.show();

Once the user has selected a device, you should immediately register for events from that device and then call the
connect method.

AdapterView.OnlItemClickListener selectDevice = new AdapterView.OnlItemClickListener () {
@Override
public void onlItemClick (AdapterView<?> adapter, View parent, int position, long,,
—1id) {
mDevice = (ConnectableDevice) adapter.getItemAtPosition(position);
mDevice.addListener (devicelListener) ;
mDevice.connect () ;

Capability Filtering

If your app is making use of certain device capabilities (media playback/controls, web app launching, etc), it is strongly
recommended that you create filters with this information for DiscoveryManager.

Devices that are discovered & shown in the picker will be guaranteed to have the set of capabilities that you have
provided. This will prevent your users from selecting a device that has not yet acquired all of its protocols.

CapabilityFilter videoFilter = new CapabilityFilter (
MediaPlayer.Display_Video,
MediaControl.Any,
VolumeControl.Volume_Up_Down

)i

CapabilityFilter imageCapabilities = new CapabilityFilter (
MediaPlayer.Display_Image
)i

DiscoveryManager.getInstance () .setCapabilityFilters (videoFilter, imageCapabilities);

Check out the article on capabilities for more depth on this topic.

5.9 Developer Guides

5.9.1 Beam Media

A common use case with Connect SDK will be to beam a simple media file (image, video, audio) to a TV. The
following is a quick example of how you can beam an image onto a TV. This example is assuming that you have
discovered & connected to a device.

22 Chapter 5. Promote Your TV App

connectSDK

Beam an image file

String mediaURL = "http://www.connectsdk.com/files/9613/9656/8539/test_image.jpg"; //_
—credit: Blender Foundation/CC By 3.0

String iconURL = "http://www.connectsdk.com/files/2013/9656/8845/test_image_icon. jpg";
— // credit: sintel-durian.deviantart.com

String title = "Sintel Character Design";

String description = "Blender Open Movie Project";

String mimeType = "image/jpeg";

MediaInfo mediaInfo = new MediaInfo.Builder (mediaURL, mimeType)
.setTitle(title)
.setDescription (description)
.setIcon (iconURL)
Jbuild();

// These variable should be class fields
// LaunchSession mLaunchSession;

// MediaControl mMediaControl;

// ConnectableDevice mDevice;

MediaPlayer.LaunchListener listener = new MediaPlayer.LaunchListener () {
@Override
public void onSuccess (MediaLaunchObject object) {
// save these object references to control media playback
mLaunchSession = object.launchSession;
mMediaControl = object.mediaControl;

// you will want to enable your media control UI elements here

@Override
public void onError (ServiceCommandError error) {
Log.d ("App Tag", "Display photo failure: " + error);

}i

mDevice.getMediaPlayer () .displayImage (mediaInfo, listener);

Beam an audio/video file

String mediaURL = "http://www.connectsdk.com/files/8913/9657/0225/test_video.mpd"; //_
—credit: Blender Foundation/CC By 3.0

String iconURL = "http://www.connectsdk.com/files/2013/9656/8845/test_image_icon. jpg";
— // credit: sintel-durian.deviantart.com

String title = "Sintel Trailer";

String description = "Blender Open Movie Project";

String mimeType = "video/mp4"; // audio/+ for audio files

SubtitleInfo subtitles = null;
if (getTv () .hasCapability (MediaPlayer.Subtitle_ WebVTT)) {
subtitles = new SubtitleInfo.Builder ("http://ec2-54-201-108-205.us-west-2.
—compute.amazonaws.com/samples/media/sintel_en.vtt")
.setMimeType ("text/vtt")
.setLanguage ("en")
.setLabel ("English subtitles")

(continues on next page)

5.9. Developer Guides 23

connectSDK

(continued from previous page)

Jbuild();
}
MediaInfo mediaInfo = new MediaInfo.Builder (mediaURL, mimeType)
.setTitle (title)
.setDescription (description)
.setIcon (iconURL)
.setSubtitleInfo (subtitles)
Jouild();

// These variables should be class fields
// LaunchSession mLaunchSession;

// MediaControl mMediaControl;

// ConnectableDevice mDevice;

MediaPlayer.LaunchlListener listener = new MediaPlayer.LaunchListener () {
@Override
public void onSuccess (MediaLaunchObject object) {
// save these object references to control media playback
mLaunchSession = object.launchSession;
mMediaControl = object.mediaControl;

// you will want to enable your media control UI elements here

@Override
public void onError (ServiceCommandError error) {
Log.d ("App Tag", "Play media failure: " + error);

}i

mDevice.getMediaPlayer () .playMedia (mediaInfo, false, listener);

Control media playback

In the previous example, you will notice that the success block was called with a mediaControl object. In order to
control the media in the current playback session, you will need to store a reference to this mediaControl object and
call control methods on that object.

// pause media file
mMediaControl.pause (null) ;

// play media file
mMediaControl.play (null);

// seek to 10 seconds
mMediaControl.seek (10000L, null);

// close media file
mMediaControl.close (null);
// or

mDevice.getMediaPlayer () .closeMedia (mLaunchSession, null);

24 Chapter 5. Promote Your TV App

connectSDK

Beam a playlist

// These variables should be class fields
// LaunchSession mLaunchSession;

// MediaControl mMediaControl;

// PlaylistControl mPlaylistControl;

// ConnectableDevice mDevice;

MediaInfo mediaInfo = new MediaInfo.Builder ("your-playlist.m3u", "application/x—
—mpegurl")

.setTitle("Playlist")

.setDescription("Playlist description")

Louild();

mDevice.getMediaPlayer () .playMedia (mediaInfo, false, new MediaPlayer.LaunchListener ()
—{
@Override
public void onSuccess (MediaLaunchObject object) {
// save these object references to control media playback
mLaunchSession = object.launchSession;
mMediaControl = object.mediaControl;
// playlistControl can be null if it's not supported by a service
mPlaylistControl = object.playlistControl;
// you will want to enable your media control UI elements here

@Override
public void onError (ServiceCommandError error) {
Log.d ("App Tag", "Play playlist failure: " + error);

Control a playlist

// play previous track

mPlaylistControl.previous (null);

// play next track

mPlaylistControl.next (null);

// play a track specified by index (index starts from zero)
mPlaylistControl. jumpToTrack (0, null);

5.9.2 Beam Web Apps

There are several platforms available which support the launching of web apps. A web app is typically run on a
temporary basis in a full-screen browser instance.

Web App IDs

Both webOS and Chromecast platforms require a web app ID for API calls to launch & communicate with web apps.
This web app ID is translated it into your web app’s URL on web app launch.

For information on creating a web app ID for webOS, please visit the registration site.

To learn how to register for a Chromecast web app ID, visit Google’s app ID registration site.

5.9. Developer Guides 25

http://lgsvl.com/connectSDK/index.php
https://developers.google.com/cast/docs/registration

connectSDK

Launch web app with identifier

Connect SDK currently supports web app launching on webOS and Chromecast devices, which both translate a web
app identifier into your web app’s URL.

Communicating with web apps

Bi-directional communication with your web app is made extremely simple. Data can be sent and received as strongly-
typed data. For example, as a string or a keyed set of values (JSON object).

String webAppId = null;

// This variable should be a class field
// ConnectableDevice mDevice;

if (mDevice.getServiceByName ("webOS TV") != null)
webAppId = "5G7328DE";

else if (mDevice.getServiceByName ("Chromecast") != null)
webAppId = "3E5106AR";

else if (mDevice.getServiceByName ("AirPlay") != null)
webAppId = "http://www.example.com/";

if (webAppId == null)
return;

mDevice.getWebAppLauncher () .launchWebApp (webAppId, new WebAppSession.LaunchListener ()

—{
@Override
public void onError (ServiceCommandError error) {
Log.d("App Tag", "Failed to open web app: " + error);
}
@Override
public void onSuccess (WebAppSession object) {
Log.d("App Tag", "Web app launch success");
}
1)
String webAppId = "your_web_app";

// These variables should be class fields

// WebAppSession mWebAppSession;

// WebAppSessionListener mWebAppSessionListener;
// ConnectableDevice mDevice;

mDevice.getWebAppLauncher () .launchiWebApp (webAppId, new WebAppSession.LaunchListener ()

< {

@Override
public void onError (ServiceCommandError error) {
Log.d ("App Tag", "Failed to open web app: " + error);
}
@Override
public void onSuccess (WebAppSession object) {
Log.d ("App Tag", "Web app launch success");

(continues on next page)

26 Chapter 5. Promote Your TV App

connectSDK

(continued from previous page)

mWebAppSession = object;
mWebAppSession.setWebAppSessionlListener (mWebAppSessionListener);

mWebAppSession.connect (new Responselistener () {
@Override
public void onError (ServiceCommandError error) {
Log.d ("App Tag", "Failed to connect to web app: " + error);
}
@Override

public void onSuccess (Object object) {
Log.d ("App Tag", "Web app connect success");

After successfully establishing a connection, you can send messages to your web app.

mWebAppSession.sendMessage ("This is a test message", null);

You can also send an NSDictionary which will be received by the web app as a JSON object.

JSONObject message = null;
try {
message = new JSONObject () {{
put ("someParameter", "someValue");
put ("anArray", new JSONArray () {{
put ("array value 1");
put ("array value 2");
put ("array value 3");
PH) g
put ("anotherObject"”, new JSONObject () {{
put ("anotherParameter", "anothervValue");
PH) g
}Yi
} catch (JSONException e) {
e.printStackTrace();

mWebAppSession.sendMessage (message, null);

WebAppSessionDelegate allows you to receive messages from your web app.

Beam media to web app

A common use case for web apps is the playback and control of media files. Connect SDK provides capabilities
for directly playing/controlling media on a WebAppSession, provided that web app has integrated the Connect SDK
JavaScript Bridge.

Rather than calling playMedia on your device’s mediaPlayer, webAppSession provides its own mediaPlayer. After
media has been beamed into the web app, the control is just like any other media session.

5.9. Developer Guides 27

connectSDK

// These variable should be class fields
// LaunchSession mLaunchSession;

// MediaControl mMediaControl;

// WebAppSession mWebAppSession;

MediaPlayer.LaunchListener listener = new MediaPlayer.launchListener () {
@Override
public void onSuccess (MediaLaunchObject object) {
// save these object references to control media playback
mLaunchSession = object.launchSession;
mMediaControl = object.mediaControl;

// you will want to enable your media control UI elements here

@Override
public void onError (ServiceCommandError error) {
Log.d ("App Tag", "Display photo failure: " + error);

}i

String mediaURL = "http://www.connectsdk.com/files/9613/9656/8539/test_image.jpg"; //_
—credit: Blender Foundation/CC By 3.0

String iconURL = "http://www.connectsdk.com/files/2013/9656/8845/test_image_icon. jpg";
— // credit: sintel-durian.deviantart.com

String title = "Sintel Character Design";

String description = "Blender Open Movie Project";

String mimeType = "image/jpeg";

List imagelist = Arrays.asList (new ImageInfo (iconURL));

MediaInfo mediaInfo = new MediaInfo (mediaURL, mimeType, title, description,
—limagelist) ;

mWebAppSession.getMediaPlayer () .displayImage (mediaInfo, listener);

5.9.3 Launch Appon TV

Many TVs and streaming players include support for launching installed apps. The following is a simplified example
of how to launch YouTube on a device.

Launch an app

// This variable should be a class field
// ConnectableDevice mDevice;

mDevice.getLauncher () .launchApp ("YouTube", new Launcher.AppLaunchListener () {
@Override
public void onError (ServiceCommandError error) f{
Log.d ("App Tag", "App Launch error: " + error);
}
@Override

public void onSuccess (LaunchSession object) {

(continues on next page)

28 Chapter 5. Promote Your TV App

connectSDK

(continued from previous page)

Log.d ("App Tag", "App Launch success.");

Device-specific app identifiers
On each device (webOS TV, Roku, etc) apps are identified by different values. Here is an example of the different
identifiers in use for the YouTube app.

* webOS: youtube.leanback.v4 (value may change with future updates)

* Netcast: 0000000000017498 (value may be different on each TV)

* DIAL: YouTube (listed in DIAL registry)

* Roku: 837 (Roku-specific channel number)

Launching an app with device-specific identifiers

The following snippet shows how to detect the platform of your device and launch with the appropriate app identifier.

String appId = null;
// This should be a class field
// ConnectableDevice mDevice;

if (mDevice.getServiceByName (WebOSTVService.ID) != null)
applId = "youtube.leanback.v4";

else if (mDevice.getServiceByName (NetcastTVService.ID) != null)
appId = "0000000000017498";

else if (mDevice.getServiceByName (RokuService.ID) != null)
applId = "837";

else if (mDevice.getServiceByName (DIALService.ID) != null)
appId = "YouTube";

if (appId == null)

return;
mDevice.getLauncher () .launchApp (appId, new Launcher.AppLaunchListener () {
@Override
public void onError (ServiceCommandError error) {
Log.d ("App Tag", "App Launch error: " + error);
}
@Override

public void onSuccess (LaunchSession object) {
Log.d ("App Tag", "App Launch success.");

Applnfo helper object

You will notice that the previous example refers to an AppInfo object. This object is used internally by Connect SDK
to manage an app’s protocol-specific properties. If a device supports app list, the app list will return a set of Applnfo

5.9. Developer Guides 29

http://www.dial-multiscreen.org/dial-registry/namespace-database

connectSDK

objects for each app installed on the TV.

Launching an app with parameters

In most cases, a device’s launcher object will allow you to pass launch parameters to your app. Connect SDK has
normalized the parameter input type to a keyed set of values. These values are then parsed into the appropriate format
for the protocol (XML, JSON, URL params, etc).

// This should be a class field
// ConnectableDevice mDevice;

JSONObject params = null;
try {
params = new JSONObject () {{
put ("someProperty", "someValue");
Py
} catch (JSONException e) {
e.printStackTrace();

AppInfo appInfo = new AppInfo("your_ app_id");
mDevice.getLauncher () .launchAppWithInfo (appInfo, params, new Launcher.
—AppLaunchListener () {

@Override

public void onError (ServiceCommandError error) {
Log.d ("App Tag", "App Launch error: " + error);

}

@Override

public void onSuccess (LaunchSession object) {
Log.d ("App Tag", "App Launch success.");

Note: Due to the variety of protocols in use, it is strongly recommended that you only use strings for the keys AND
values of your parameters.

5.9.4 Discovery Manager

At the heart of Connect SDK is DiscoveryManager, a multi-protocol service discovery engine with a pluggable archi-
tecture. Much of your initial experience with Connect SDK will be with the DiscoveryManager class, as it consolidates
discovered service information into ConnectableDevice objects.

DiscoveryManager supports discovering services of differing protocols by using DiscoveryProviders. Many services
are discoverable over SSDP and are registered to be discovered with the SSDPDiscoveryProvider class.

As services are discovered on the network, the DiscoveryProviders will notify DiscoveryManager. DiscoveryManager
is capable of attributing multiple services, if applicable, to a single ConnectableDevice instance. Thus, it is possible to
have a mixed-mode ConnectableDevice object that is theoretically capable of more functionality than a single service
can provide.

DiscoveryManager keeps a running list of all discovered devices and maintains a filtered list of devices that have
satisfied any of your CapabilityFilters. This filtered list is used by the DevicePicker when presenting the user with a

30 Chapter 5. Promote Your TV App

connectSDK

list of devices.

Connect SDK device discovery can be started in one line.

DiscoveryManager.getInstance () .start ();

Features

Filtering devices by capability

It will be necessary in many cases to filter out devices that don’t support a desired feature-set. DiscoveryManager
provides the setCapabilityFilters method to provide for this ability.

Here is a simple example that discovers devices that support (video playback AND any media controls AND volume
up/down) OR (image display).

CapabilityFilter videoFilter = new CapabilityFilter (
MediaPlayer.Display_Video,
MediaControl.Any,
VolumeControl.Volume_ Up_Down

)i

CapabilityFilter imageCapabilities = new CapabilityFilter(
MediaPlayer.Display_Image

)

DiscoveryManager.getInstance () .setCapabilityFilters (videoFilter, imageCapabilities);

DeviceService registration

By default, Connect SDK is configured to discover all the services that it supports (webOS, Netcast, Chromecast,
DIAL, & Roku). It is possible to support only a subset of these services by manually registering those services before
starting DiscoveryManager for the first time.

DiscoveryManager.getInstance () .registerDeviceService (AirPlayService.class,
—ZeroconfDiscoveryProvider.class);
DiscoveryManager.getInstance () .registerDeviceService (CastService.class,

—CastDiscoveryProvider.class);
DiscoveryManager.getInstance () .registerDeviceService (DIALService.class,
—SSDPDiscoveryProvider.class

)

) 14
DiscoveryManager.getInstance () .registerDeviceService (RokuService.class,
—SSDPDiscoveryProvider.class);
DiscoveryManager.getInstance () .registerDeviceService (DLNAService.class,
—SSDPDiscoveryProvider.class); // LG TV devices only, includes NetcastTVService
DiscoveryManager.getInstance ()

)

—SSDPDiscoveryProvider.class

.registerDeviceService (WebOSTVService.class,

’

Pairing level

Connect SDK has support for pairing with certain devices. Having pairing disabled may reduce the number of sup-
ported capabilities that a ConnectableDevice has. Certain devices, although they may support the features you are
filtering for, may not pass your CapabilityFilter if pairing is disabled.

See the Supported Features list for information on what devices require pairing for certain capabilities.

5.9. Developer Guides 31

connectSDK

For the best user experience, Connect SDK has disabled pairing by default. Pairing can be enabled very easily, but it
must be enabled before DiscoveryManager is started for the first time.

DiscoveryManager.getInstance () .setPairinglevel (PairingLevel.ON) ;

Device store

When devices are connected to, there is certain information that is retained. This information is helpful for app re-
launches, pairing, remembering commonly-used devices, and more. Connect SDK provides a ConnectableDeviceStore
protocol to allow you to store ConnectableDevice information in a manner that suits your use case.

A default implementation, DefaultConnectableDeviceStore, will be used by DiscoveryManager if no other Con-
nectableDeviceStore is provided to DiscoveryManager when startDiscovery is called.

See also:
* DiscoveryManager
* CapabilityFilter
* PairingLevel

e ConnectableDeviceStore

5.9.5 Checking Capabilities
Setting up filters

When you are discovering devices you are able to specify multiple capability filters.

CapabilityFilter videoFilter =
new CapabilityFilter(
MediaPlayer.Display_Video,
MediaControl.Any,
VolumeControl.Volume_Up_Down) ;

CapabilityFilter imageFilter =
new CapabilityFilter(
MediaPlayer.Display_Image) ;

DiscoveryManager.getInstance () .setCapabilityFilters(videoFilter, imageFilter);

Any service that is found may meet the requirements of either filter but not both. When getting the Ul ready if a device
might have a capability you should always check before enabling that Ul component.

myImageButton.setEnabled (mDevice.hasCapability (MediaPlayer.Display_Image));

5.9.6 Resuming Apps

It may be necessary for your app to resume from a background or closed state and re-establish connection with a
previously connected device. There are many ways in which Connect SDK provides information to allow for this
behavior.

32 Chapter 5. Promote Your TV App

connectSDK

ConnectableDevice ID
Each ConnectableDevice has a unique ID assigned to it upon creation. When that device is connected to, the device

store saves information about each of the device’s services. The unique ID persists across app launches by attributing
service UUIDs to the unique device ID in the device store.

LaunchSession

The ability to interact with an app requires some information to persist, including a session ID. This session ID may
be required to close the app, as well as allow the app to accurately track certain state information.

WebAppSession

The ability to communicate with a web app requires a LaunchSession object and/or the web app id.

Resuming most recent connection

In order to save & reconnect to a previously connected device, all you need to keep track of is the device’s ID.
Assuming you are using the ConnectableDeviceStore included with Connect SDK, previously connected devices will
persist the same ID between app launches.

When your app restarts, you should immediately start discovery and listen for device found events from Discovery-
Manager. In these events, you can check each device’s ID and call connect on the previously connected device.

Important note about reconnecting
Just because your device has been discovered on the network doesn’t mean that all of its services/capabilities are

available. You will need to set a CapabilityFilter on DiscoveryManager or manually check the ConnectableDevice’s
capabilities before you call connect.

Save device ID to disk

ConnectableDevice device; // device you've connected to

SharedPreferences preferences = context.getSharedPreferences ("MyPreferences", Context.
—MODE_PRIVATE) ;
SharedPreferences.Editor editor = preferences.edit();

editor.putString ("recentDeviceId", device.getId());
editor.commit ();

Reconnect to device

ConnectableDevice mDevice;
String mRecentDevicelId;

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

(continues on next page)

5.9. Developer Guides 33

connectSDK

(continued from previous page)

SharedPreferences preferences = context.getSharedPreferences ("MyPreferences",
—Context .MODE_PRIVATE) ;
mRecentDeviceld = preferences.getString("recentDeviceId");

DiscoveryManager.getInstance () .setCapabilityFilters (myCapabilityFilters);

DiscoveryManager.getInstance () .addListener (this);
DiscoveryManager.getInstance () .start ();
}
@Override
public void onDeviceAdded (DiscoveryManager manager, ConnectableDevice device) {
if (mRecentDeviceId != null && mDevice == null) {
if (device.getId() .equalsIgnoreCase (mRecentDevicelId)) {
mDevice = device;

device.addListener (this);
device.connect () ;

Resuming a web app session

Resuming a web app session is as simple as saving the WebAppSession’s LaunchSession object before entering the
background. It can even be serialized into a JSON object for easy cross-platform storage.

Save session info to disk

WebAppSession webAppSession; // retrieved from WebAppLauncher launch success block

LaunchSession launchSession = webAppSession.launchSession;
JSONObject launchSessionInfo = launchSession.toJSONObject () ;

SharedPreferences preferences = context.getSharedPreferences ("MyPreferences", Context.
—MODE_PRIVATE) ;
SharedPreferences.Editor editor = preferences.edit();

editor.putString("launchSession", launchSessionInfo.toString());
editor.commit () ;

Re-create session after device is connected/ready

ConnectableDevice device; // device that has been re—-discovered & re—-connected
WebAppSession.LaunchListener joinWebAppListener;

SharedPreferences preferences = context.getSharedPreferences ("MyPreferences", Context.
—MODE_PRIVATE) ;

String launchSessionData = preferences.getString("launchSession");
JSONObject launchSessionInfo = null;

(continues on next page)

34 Chapter 5. Promote Your TV App

connectSDK

(continued from previous page)

try {
launchSessionInfo = new JSONObject (launchSessionData);
} catch (JSONException ex) {

if (launchSessionInfo != null) {
LaunchSession launchSession = LaunchSession.
—launchSessionFromJSONObject (launchSessionInfo);

device.getWebAppLauncher () . joinWebApp (launchSession, joinWebAppListener);

Low-effort re-connection option

Alternatively, you could re-join your web app with just the web app id. This could have the side effect of generating
new session information for your user, which may not be desired.

device.getWebAppLauncher () . joinWebApp ("your web app id", joinWebAppListener);

See also:
* Discover & Connect to Device
* Checking Capabilities
* Beam Web Apps

5.9.7 Screen Mirroring

With Connect SDK integrated in the mobile app, it can cast the screen and sound into the TV screen. This allows you
to extend the screen of a mobile app to a larger TV screen and share it with your family. This guide assumes that you
completed the setup described in the Serup Instructions.

There are two ways to display the screen to your TV.
* Screen mirroring: A way to dispay the entire app screen to the TV.

* Dual screen: A way to create a second screen of the app and display it on the TV while leaving the app screen
separate. Dual screen is provided as a screen mirroring function.

Note: This feature is only supported on webOS TV 22.

How to Use Screen Mirroring

To use screen mirroring, follow these steps.

1. Check the Android Version

Screen mirroring runs on Android version 10 (Q, API Level 29) and higher, so you need to check the OS version when
starting the app. If the OS version does not support the screen mirroring function, the function will not work or the
app will close.

5.9. Developer Guides 35

connectSDK

if (ScreenMirroringControl.isCompatibleOsVersion() == false) {
// The 0OS version is lower than Android 10
// and screen mirroring 1is not supported

2. Search Devices

Search for devices (TVs) connected to your home network. You can set the filter to only search for TVs that support
the screen mirroring function. Since the search for TVs takes some time, it should be started as soon as the app is
running.

// Initializes DiscoveryManager
DiscoveryManager.init (this);

// Sets a device search filter for devices that support screen mirroring (dual_,
—screen) .

ArrayList<String> capabilities = new ArrayList<>();
capabilities.add(ScreenMirroringControl.ScreenMirroring) ;

CapabilityFilter filter = new CapabilityFilter (capabilities);

// Searches devices
DiscoveryManager.getInstance () .setPairinglLevel (DiscoveryManager.PairingLevel.ON) ;
DiscoveryManager.getInstance () .setCapabilityFilters (filter);
DiscoveryManager.getInstance () .registerDeviceService (WebOSTVService.class,

s)

()

—SSDPDiscoveryProvider.class);

DiscoveryManager.getInstance () .start ();

3. Request Permissions

The screen mirroring requires the audio permission (android.permission.RECORD_AUDIO). The permission agree-
ment is executed only once on the first run or when there is no permission.

// Requests permissions
String[] permissions = new String|[] {Manifest.permission.RECORD_AUDIO};
ActivityCompat.requestPermissions (this, permissions, REQUEST_CODE_ACCESS_PERMISSIONS) ;

// Delivers request results to onRequestPermissionsResult
public void onRequestPermissionsResult (int requestCode, String[] permissions, int[]
—grantResults) {

super.onRequestPermissionsResult (requestCode, permissions, grantResults);

if (requestCode == REQUEST_CODE_ACCESS_PERMISSIONS) {
if (hasPermission () == true) {
// Succeeded to get permission
} else {
// Failed to get permission

// Checks the permissions
private boolean hasPermission () {

(continues on next page)

36 Chapter 5. Promote Your TV App

connectSDK

(continued from previous page)

return ActivityCompat.checkSelfPermission (this, Manifest.permission.RECORD_AUDIO)
—== PackageManager .PERMISSION_GRANTED;
}

4. Get User Approval for Screen Capture

User approval is required to capture the screen. Intent data must be delivered to the screen mirroring API when
consenting to screen capture.

// User approval is required to capture the screen

// Displays the system dialog for user approval

MediaProjectionManager projectionManager = (MediaProjectionManager)
—getSystemService (Context .MEDIA_ PROJECTION_SERVICE) ;

startActivityForResult (projectionManager.createScreenCapturelntent (), REQUEST_CODE_

—CAPTURE_CONSENT) ;

// Passes the user approval result to onActivityResult
public void onActivityResult (int requestCode, int resultCode, @Nullable Intent data) {
super.onActivityResult (requestCode, resultCode, data);

if (requestCode == REQUEST_CODE_CAPTURE_CONSENT) {
if (resultCode == Activity.RESULT_OK) {
// Succeed to get user approval
// Intent data must be saved and delivered to screen mirroring API
mProjectionData = data;
} else {
// User Approval Failed

5. Selecta TV

Select the TV to run the screen mirroring on by using the Picker. After selecting a TV, get a ScreenMirroringControl
object to use the screen mirroring APIL.

private ScreenMirroringControl mScreenMirroringControl;

AdapterView.OnlItemClickListener listener = (adapter, parent, position, id) —-> {
ConnectableDevice connectableDevice = (ConnectableDevice) adapter.
—getItemAtPosition (position);
mScreenMirroringControl = connectableDevice.getScreenMirroringControl ();

}i

// Displays a TV search picker dialog
AlertDialog dialog = new DevicePicker (this) .getPickerDialog(getString (R.string.dialog

—select_tv), listener);
dialog.show();

5.9. Developer Guides 37

connectSDK

6. Start Screen Mirroring

Now you can run the screen mirroring. Pairing is required when you connect to a TV for the first time, and the user is
informed about this.

The following runtime errors might occur while the screen mirroring is running.
* When the network connection is terminated
* When the TV is turned off
* When the screen mirroring is terminated on the TV
* When the mobile device’s notification terminates the screen mirroring
¢ When other exceptions occurred

For these errors, it is necessary to receive the error in real-time through the listener and respond appropriately.

ProgressDialog progress = new ProgressDialog(this);
progress.setMessage (getString (R.string.dialog_connecting_tv));
progress.show();

// Displays the pairing pop-up

AlertDialog pairingAlert = new AlertDialog.Builder (this)
.setTitle(getString(R.string.dialog_title_notice))
.setCancelable (false)
.setMessage (getString (R.string.dialog_allow_pairing))
.setNegativeButton (android.R.string.ok, null)
.create();

// Start the screen mirroring
// Each progress 1s passed through a callback function
mScreenMirroringControl.startScreenMirroring (this, mProjectionData, new,_
—ScreenMirroringStartListener () {

// When connecting to a TV for the first time, a pop-up about the mobile,,
—connection is displayed on the TV,

// and a pairing procedure is required once in which the user selects [OK] with,,
—~the remote control

// To do this, the app should display a pop-up with information about pairing

public void onPairing() {

pairingAlert.show();

// This 1is a callback function when the screen mirroring starts
// and whether or not it succeeds is passed through the result parameter
public void onStart (boolean result, Presentation secondScreen) {
updateButtonVisibility () ;
pairingAlert.dismiss ();
progress.dismiss();

if (result == true) Toast.makeText (ScreenMirroringActivity.this, getString(R.
—string.toast_start_completed), Toast.LENGTH_SHORT) .show();
else Toast.makeText (ScreenMirroringActivity.this, getString(R.string.toast_
—start_failed), Toast.LENGTH_SHORT) .show();
}
}) i

// This is a callback function when an unexpected error occurs while running the_
—Sscreen mirroring

(continues on next page)

38 Chapter 5. Promote Your TV App

connectSDK

(continued from previous page)

// An error occurs when the network 1is disconnected, or the TV is shut down, etc.
mScreenMirroringControl.setErrorListener (this, error —> {
// Error occurred

)i

7. Stop Screen Mirroring

When you want to stop mirroring, call stopScreenMirroring.

// Stops screen mirroring. Whether or not to stop normally is passed through the
—result parameter
// Abnormal termination is a case in which screen mirroring is stopped without,,
—running, etc.
mScreenMirroringControl.stopScreenMirroring (this, result —-> {

Toast.makeText (ScreenMirroringActivity.this, getString(R.string.toast_stopped),
—Toast.LENGTH_SHORT) .show () ;

updateButtonVisibility();
b

// Stops device search
DiscoveryManager.getInstance () .stop();
DiscoveryManager.destroy () ;

How to Use Dual Screen

Dual screen is a function that creates a second screen, separate from the app screen, and displays it on the TV. The
basic procedure is the same as with the screen mirroring above, and only the differences are explained below. When
mirroring starts, you just need to deliver the user-defined second screen class.

Define Second Screen

Inherit Android Presentation class to define a second screen class for dual screen.

public class SecondScreenDemo extends Presentation implements SnakeGameListener {
private Context mOuterContext;

public SecondScreenDemo (@NonNull Context outerContext, @NonNull Display display) {
super (outerContext, display);
mOuterContext = outerContext;

@Override

public void onCreate (@NonNull Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
super.setContentView (R.layout.snake_game_second_screen_layout);

5.9. Developer Guides 39

connectSDK

Start Dual Screen

Dual screen starts mirroring the screen by using the user-defined, Presentation inherited class. When the mobile device
is connected to the TV, it creates a virtual display for the second screen, creates an instance of the second screen class,
and passes it to the onStart callback. The user can then access the Second Screen class to control the dual screen.

mScreenMirroringControl.startScreenMirroring (this, projectionData, SecondScreenDemo.
—class, new ScreenMirroringControl.ScreenMirroringStartListener () {

// This is a callback function when screen mirroring starts
// and whether or not it succeeds is passed through the result parameter
public void onStart (boolean result, Presentation secondScreen) {
updateButtonVisibility();
pairingAlert.dismiss ();
progress.dismiss();

if (result == true) Toast.makeText (getBaseContext (), getString(R.string.toast__
—start_completed), Toast.LENGTH_SHORT) .show();

else Toast.makeText (getBaseContext (), getString(R.string.toast_start_failed)
—Toast .LENGTH_SHORT) .show () ;

[

if (secondScreen != null) {
mSecondScreenDemo = (SecondScreenDemo) secondScreen;
mSecondScreenDemo = mSecondScreenDemo.start () ;

5.9.8 Remote Camera

With Connect SDK integrated in the mobile app, it can display camera preview on the TV screen. This allows you to
use your mobile device’s camera as a remote camera for the TV that does not have an internal or USB camera. This
guide assumes that you completed the setup described in the Setup Instructions.

Note: This feature is only supported on webOS TV 22.

How to Use Remote Camera

To use a remote camera, follow the steps below.

1. Check the Android Version

The remote camera function is supported by Android 7 (N, API Level 24) and higher. When you run the app, check
the OS version to see if the remote camera is available. If the OS version does not support the remote camera function,
the function will not work or the app will close.

if (RemoteCameraApi.getInstance().isCompatibleOsVersion() == false) {
// The 0OS version is lower than Android 7
// and remote camera 1is not supported

40 Chapter 5. Promote Your TV App

connectSDK

2. Search Devices

Search for devices (TVs) connected to your home network. You can set the filter to only search for TVs that support
the remote camera function. Since the search for TVs takes some time, it should be started as soon as the app is
running.

// Initializes DiscoveryManager
DiscoveryManager.init (this);

// Sets a device search filter for devices that support remote camera
ArrayList<String> capabilities = new ArrayList<>();

capabilities.add (RemoteCameraControl.RemoteCamera) ;

CapabilityFilter filter = new CapabilityFilter (capabilities);

// Searches devices
DiscoveryManager.getInstance () .setPairinglevel (DiscoveryManager.PairingLevel.ON) ;
DiscoveryManager.getInstance () .setCapabilityFilters (filter);
DiscoveryManager.getInstance () .registerDeviceService (WebOSTVService.class,

s)

0

—SSDPDiscoveryProvider.class);

DiscoveryManager.getInstance () .start ();

3. Request Permissions

The remote camera function requires the camera permission (android.permission. CAMERA) and audio permission
(android.permission.RECORD_AUDIO). The user must grant these permissions when the remote camera is first exe-
cuted.

// Requests permissions

String[] permissions = new String[]{android.permission.CAMERA, Manifest.permission.
—RECORD_AUDIO};

ActivityCompat.requestPermissions (this, permissions, REQUEST_CODE_ACCESS_PERMISSIONS) ;

// Delivers request results to onRequestPermissionsResult
public void onRequestPermissionsResult (int requestCode, String[] permissions, int[]
—grantResults) {

super.onRequestPermissionsResult (requestCode, permissions, grantResults);

if (requestCode == REQUEST_CODE_ACCESS_PERMISSIONS) {
if (hasPermission () == true) {
// Succeeded to get permission
} else {
// Failed to get permission

// Checks the permissions
private boolean hasPermission() {
return ActivityCompat.checkSelfPermission (this, Manifest.permission.CAMERA) ==
—PackageManager .PERMISSION_GRANTED &&
ActivityCompat.checkSelfPermission (this, Manifest.permission.RECORD_AUDIO) ==
—PackageManager .PERMISSION_GRANTED;
}

5.9. Developer Guides 4

connectSDK

4, Selecta TV

Select the TV to run the remote camera on by using the Picker. After selecting a TV, get a RemoteCameraControl
object to use the remote camera API.

private RemoteCameraControl mRemoteCameraControl ;

AdapterView.OnItemClickListener listener = (adapter, parent, position, id) -> {
ConnectableDevice connectableDevice = (ConnectableDevice) adapter.
—getItemAtPosition (position);
mRemoteCameraControl = connectableDevice.getRemoteCameraControlControl ();

}i

// Displays a TV search picker dialog

AlertDialog dialog = new DevicePicker (this) .getPickerDialog(getString(R.string.dialog_
—select_tv), listener);

dialog.show () ;

5. Start Remote Camera

Now you can run the remote camera. First, create a SurfaceView component to show a camera preview, and then pass
its Surface as a parameter. If the preview is not needed, set the Surface to null. In addition, set initial values such as
the microphone mute settings or the camera lens direction and pass them as parameters. Pairing is required when you
connect to a TV for the first time, and the user is informed about it.

// Create a SurfaceView to display the camera preview
SurfaceView surfaceView = findViewById(R.id.surfaceView);
SurfaceHolder holder = surfaceView.getHolder ();

holder.addCallback (new SurfaceHolder.Callback () {
public void surfaceCreated(SurfaceHolder holder) {
// When the SurfaceView is created, pass it as an argument to request the_
—remote camera to start
startRemoteCamera (holder.getSurface());

)i

private void startRemoteCamera (Surface surface) {
AlertDialog pairingAlert = new AlertDialog.Builder (this)
.setTitle(getString(R.string.dialog_title_notice))
.setCancelable (false)
.setMessage (getString(R.string.dialog_allow_pairing))
.setNegativeButton (android.R.string.ok, null)
.create();

// Starts the remote camera
// Each progress is passed through a callback function
mRemoteCameraControl.startRemoteCamera (this, surface, mMicMute, mLensFacing, new_
—RemoteCameraStartListener () {
// When connecting to a TV for the first time, a pop-up about the mobile_
—connection is displayed on the TV,
// and a pairing procedure procedure 1s required once in which the user,
—selects [OK] with the remote control.

(continues on next page)

42 Chapter 5. Promote Your TV App

connectSDK

(continued from previous page)

// To do this, the app should display a pop-up with information about pairing
public void onPairing() {
pairingAlert.show () ;

// This 1is a callback function when the remote camera starts
// and whether or not it succeeds is passed through the result parameter
public void onStart (boolean result) ({

if (result == true) {
mPlayingAlert.show();
} else {

Toast.makeText (CameraPreviewActivity.this, getString(R.string.toast_
—start_failed), Toast.LENGTH_SHORT) .show();
finish();
}

pairingAlert.dismiss () ;

// Handles the callback when camera properties are changed on the TV
mRemoteCameraControl.setPropertyChangelListener (this, property —> {
Toast.makeText (this, getString(R.string.toast_property_changed) + ": " +
—property, Toast.LENGTH_SHORT) .show();
b

// This is a callback function when an unexpected error occurs while running the_

—remote camera
// An error occurs when the network is disconnected, the TV is shut down, etc.

mRemoteCameraControl.setErrorListener (this, error -> {
Toast .makeText (this, getString(R.string.toast_running_ error) + ": " + error,
—Toast.LENGTH_SHORT) .show () ;
mPlayingAlert.dismiss () ;
1)

6. Start Camera Playback

You can designate setCameraPlayingListener to receive a callback when camera stream transmission and playback
start by selecting the mobile device’s camera on the TV. When the camera playback starts on the TV, take appropriate

actions such as removing pop-ups.

// Handles the callback function when the remote camera preview screen starts by,
—selecting the mobile on the TV
mRemoteCameraControl.setCameraPlayingListener (this, () —> {

Toast.makeText (this, getString(R.string.toast_play_started), Toast.LENGTH_SHORT) .
—show () ;

mPlayingAlert.dismiss () ;
1)

7. Stop Remote Camera

When you want to stop the remote camera, call stopRemoteCamera.

5.9. Developer Guides 43

connectSDK

mRemoteCameraControl.stopRemoteCamera (this, result—>{

)i

Features

Change Camera Property

You can change camera properties such as brightness and AWB on the TV, and you can receive callbacks by designat-
ing a setPropertyChangeListener listener.

// Handles the callback function when changing camera properties on the TV
mRemoteCameraControl.setPropertyChangelistener (this, property —-> {

Toast.makeText (this, getString(R.string.toast_property_changed) + ": " + property,
< Toast.LENGTH_SHORT) .show () ;
1)

Handle Runtime Errors

The following runtime error might occur while the remote camera is running.
* When the network connection is terminated
¢ When the TV is turned off
* When the remote camera is terminated on the TV
* When the mobile device’s notification terminates the remote camera
* When other exceptions occurred

For these errors, it is necessary to receive the error in real-time through the listener and respond appropriately.

// This is a callback function when an unexpected error occurs while running a remote,
—camera
// An error occurs when the network connection is disconnected, the TV is shut down,

—etc.
mRemoteCameraControl.setErrorListener (this, error —-> ({
Toast.makeText (this, getString(R.string.toast_running_error) + ": " + error,

—Toast.LENGTH_SHORT) .show () ;
mPlayingAlert.dismiss ();
1)

Set the Microphone Mute State

If you change the microphone mute state, it must be transmitted. The app must maintain the current mute setting value.

mRemoteCameraControl.setMicMute (this, mMicMute); // true or false

Switch between Front and Back Cameras

When the direction of the camera is switched between front and rear, the camera direction is transmitted. The app
must maintain the current camera direction value.

44 Chapter 5. Promote Your TV App

connectSDK

mRemoteCameraControl.setlLensFacing (this, mLensFacing); // RemoteCameraApi.LENS_FACING.
—BACK or RemoteCameraApi.LENS_FACING_FRONT

5.9.9 FAQ

When do | start the DiscoveryManager?
We recommend starting the DiscoveryManager when the app is started so that devices can be discovered and ready for
use by the time the Ul is loaded.

If you need to start the discovery later or only during a specific activity within your app you should be aware that it
can take a few seconds for devices to be discovered.

How do | reconnect to a device on resume?

When your app goes into the background you can hold onto a ConnectableDevice object. When your app resumes
you have the reference to the ConnectableDevice and you can listen for the Device ready function. Once the device is
ready you can call connect and begin using it again.

How do | re-connect to a Web App when app resumes?

When a WebApp is launched on a TV you get a reference to that WebApp’s WebAppSession object. When your
phone’s application goes into the background you can hold onto that WebAppSession object for the next time your
application is in the foreground. Once your app is in the foreground again and you get a ConnectableDevice object.

public void onDeviceReady (ConnectableDevice device);

Then once the method is called you can use the stored WebAppSession object to continue to send commands to the
running app.

How do | get the number of devices discovered?

When you start an app you should always assume that there are 0 devices discovered. Using the DiscovryManagerDel-
egate you will be notified whenever a new device is discovered and an existing device has been lost.

public void onDeviceAdded (DiscoveryManager manager, ConnectableDevice device);
public void onDeviceRemoved (DiscoveryManager manager, ConnectableDevice device);

When either of these methods are called you can reference the compatibleDevices property of the sharedManager to
get a complete list of devices that match your filters.

When there are no compatible devices your Ul should reflect this by hiding the beam icon.

How do | get an ADHoc list of devices?

When you specify your device filters you may have devices that don’t support every feature. If you are searching for
all devices that can either display an image or play a YouTube video then you want to show a list of all the devices that
can show an image.

To do this you will need to check that each device in the compatibleDevices array has the capabilities that you are
looking for.

5.9. Developer Guides 45

connectSDK

public List getImageDevices () {
List imageDevices = new ArrayList();

for (ConnectableDevice device : DiscoveryManager.getInstance().
—getCompatibleDevices () .values()) {
if (device.hasCapability (MediaPlayer.Display_Image))
imageDevices.add (device) ;

}

return imageDevices;

How do | show an image or video from my device?

All videos that are sent with the Connect SDK are links to external web content and your device is no different. You
can setup a quick HTTP server and pass the url of your phone with connect SDK. The media player will reach to your
HTTP server and stream your content right from there.

There are some pre-made libraries that already do the heavy lifting for you.

Checkout: NanoHttpd

5.10 API References

5.10.1 Discovery
CapabilityFilter

com.connectsdk.discovery.CapabilityFilter

CapabilityFilter is an object that wraps a List of required capabilities. This CapabilityFilter is used for determining
which devices will appear in DiscoveryManager’s compatibleDevices array. The contents of a CapabilityFilter’s array
must be any of the string constants defined in the Capability Class constants.

CapabilityFilter values

Here are some examples of values for the Capability constants.

¢ MediaPlayer.Display_Video = “MediaPlayer.Display.Video”

* MediaPlayer.Display_Image = “MediaPlayer.Display.Image”

* VolumeControl.Volume_Subscribe = “VolumeControl.Subscribe”
¢ MediaControl.Any = “MediaControl. Any”

All Capability header files also define a constant array of all capabilities defined in that header (ex. kVolumeControl-
Capabilities).

AND/OR Filtering

CapabilityFilter is an AND filter. A ConnectableDevice would need to satisfy all conditions of a CapabilityFilter to
pass.

46 Chapter 5. Promote Your TV App

https://github.com/NanoHttpd/nanohttpd

connectSDK

The DiscoveryManager capabilityFilters is an OR filter. a ConnectableDevice only needs to satisfy one condition
(CapabilityFilter) to pass.

Examples

Filter for all devices that support video playback AND any media controls AND volume up/down.

List<String> capabilities = new ArrayList<String>();
capabilities.add(MediaPlayer.Display_Video);
capabilities.add (MediaControl.Any);
capabilities.add(VolumeControl.Volume_ Up_Down) ;

CapabilityFilter filter =
new CapabilityFilter (capabilities);
DiscoveryManager.getInstance () .setCapabilityFilters (filter);

Filter for all devices that support (video playback AND any media controls AND volume up/down) OR (image dis-
play).

CapabilityFilter videoFilter =
new CapabilityFilter(
MediaPlayer.Display_Video,
MediaControl.Any,
VolumeControl.Volume_ Up_Down) ;

CapabilityFilter imageFilter =
new CapabilityFilter(
MediaPlayer.Display_Image);

DiscoveryManager.getInstance () .setCapabilityFilters (videoFilter, imageFilter);

Properties

List<String> capabilities = new ArrayList<String>()

List of capabilities required by this filter. This property is readonly use the addCapability or addCapabili-
ties to build this object.

Methods

CapabilityFilter ()

Create an empty CapabilityFilter.
CapabilityFilter (String. .. capabilities)

Create a CapabilityFilter with the given array of required capabilities.

Parameters:

* capabilities — Capabilities to be added to the new filter

CapabilityFilter (List<String> capabilities)

Create a CapabilityFilter with the given array of required capabilities.

Parameters:

5.10. API References 47

connectSDK

* capabilities — List of capability names (see capability class files for String constants)
void addCapability (String capability)
Add a required capability to the filter.
Parameters:
* capability — Capability name to add (see capability class files for String constants)
void addCapabilities (List<String> capabilities)
Add array of required capabilities to the filter. (see capability class files for String constants)
Parameters:
* capabilities — List of capability names
void addCapabilities (String. .. capabilities)
Add array of required capabilities to the filter. (see capability classes files for String constants)
Parameters:

e capabilities — String[] of capability names

DevicePicker

com.connectsdk.device.DevicePicker

Overview

The DevicePicker is provided by the DiscoveryManager as a simple way for you to present a list of available devices
to your users.

In Depth

By calling the getPickerDialog you will get a reference to the AlertDialog that will be updated automatically updated
as compatible devices are discovered.

Methods

DevicePicker (Activity activity) Creates a new DevicePicker
Parameters:
* activity — Activity that DevicePicker will appear in
ListView getListView ()
void pickDevice (ConnectableDevice device) Sets a selected device.
Parameters:
¢ device — Device that has been selected.

void cancelPicker () Cancels pairing with the currently selected device.

48 Chapter 5. Promote Your TV App

connectSDK

AlertDialog getPickerDialog (String message, final OnltemClickListener listener) This method will return an
AlertDialog that contains a ListView with an item for each discovered ConnectableDevice.

Parameters:
» message — The title for the AlertDialog

* listener — The listener for the ListView to get the item that was clicked on

DiscoveryManager

com.connectsdk.discovery.DiscoveryManager

Overview

At the heart of Connect SDK is DiscoveryManager, a multi-protocol service discovery engine with a pluggable archi-
tecture. Much of your initial experience with Connect SDK will be with the DiscoveryManager class, as it consolidates
discovered service information into ConnectableDevice objects.

In depth

DiscoveryManager supports discovering services of differing protocols by using DiscoveryProviders. Many services
are discoverable over SSDP and are registered to be discovered with the SSDPDiscoveryProvider class.

As services are discovered on the network, the DiscoveryProviders will notify DiscoveryManager. DiscoveryManager
is capable of attributing multiple services, if applicable, to a single ConnectableDevice instance. Thus, it is possible to
have a mixed-mode ConnectableDevice object that is theoretically capable of more functionality than a single service
can provide.

DiscoveryManager keeps a running list of all discovered devices and maintains a filtered list of devices that have
satisfied any of your CapabilityFilters. This filtered list is used by the DevicePicker when presenting the user with a
list of devices.

Only one instance of the DiscoveryManager should be in memory at a time. To assist with this, DiscoveryManager
has static method at sharedManager.

Example:

DiscoveryManager.init (getApplicationContext ());

DiscoveryManager discoveryManager = DiscoveryManager.getInstance();
discoveryManager.addListener (this);

discoveryManager.start ();

Inner Classes

* PairingLevel

Methods

static void init (Context context) Initilizes the Discovery manager with a valid context. This should be done as soon
as possible and it should use getApplicationContext() as the Discovery manager could persist longer than the
current Activity.

5.10. API References 49

http://tools.ietf.org/html/draft-cai-ssdp-v1-03

connectSDK

DiscoveryManager.init (getApplicationContext ());

Parameters:
* context
static void destroy ()

static void init (Context context, ConnectableDeviceStore connectableDeviceStore) Initilizes the Discovery man-
ager with a valid context. This should be done as soon as possible and it should use getApplicationContext() as
the Discovery manager could persist longer than the current Activity.

This accepts a ConnectableDeviceStore to use instead of the default device store.

MyConnectableDeviceStore myDeviceStore = new MyConnectableDeviceStore();
DiscoveryManager.init (getApplicationContext (), myDeviceStore);

Parameters:
e context
¢ connectableDeviceStore
static DiscoveryManager getInstance () Get a shared instance of DiscoveryManager.

void addListener (DiscoveryManagerListener listener) Listener which should receive discovery updates. It is not
necessary to set this listener property unless you are implementing your own device picker. Connect SDK
provides a default DevicePicker which acts as a DiscoveryManagerListener, and should work for most cases.

If you have provided a capabilityFilters array, the listener will only receive update messages for ConnectableDe-
vices which satisfy at least one of the CapabilityFilters. If no capabilityFilters array is provided, the listener will
receive update messages for all ConnectableDevice objects that are discovered.

Parameters:
* listener — (optional) DiscoveryManagerListener with methods to be called on success or failure
void removeListener (DiscoveryManagerListener listener) Removes a previously added listener
Parameters:
* listener — (optional) DiscoveryManagerListener with methods to be called on success or failure
void setCapabilityFilters (CapabilityFilter... capabilityFilters) Parameters:
* capabilityFilters
void setCapabilityFilters (List<CapabilityFilter> capabilityFilters) Parameters:
e capabilityFilters
List<Capability Filter> getCapabilityFilters () Returns the list of capability filters.
boolean deviceIsCompatible (ConnectableDevice device) Parameters:
e device
void start () Start scanning for devices on the local network.
void stop () Stop scanning for devices.

void setConnectableDeviceStore (ConnectableDeviceStore connectableDeviceStore) ConnectableDeviceStore ob-
ject which loads & stores references to all discovered devices. Pairing codes/keys, SSL certificates, recent
access times, etc are kept in the device store.

50 Chapter 5. Promote Your TV App

connectSDK

ConnectableDeviceStore is a protocol which may be implemented as needed. A default implementation, De-
faultConnectableDeviceStore, exists for convenience and will be used if no other device store is provided.

In order to satisfy user privacy concerns, you should provide a UI element in your app which exposes the
ConnectableDeviceStore removeAll method.

To disable the ConnectableDeviceStore capabilities of Connect SDK, set this value to nil. This may be done at
the time of instantiation with Di scoveryManager.init (context, null);.

Parameters:
¢ connectableDeviceStore

ConnectableDeviceStore getConnectableDeviceStore () ConnectableDeviceStore object which loads & stores ref-
erences to all discovered devices. Pairing codes/keys, SSL certificates, recent access times, etc are kept in the
device store.

ConnectableDeviceStore is a protocol which may be implemented as needed. A default implementation, De-
faultConnectableDeviceStore, exists for convenience and will be used if no other device store is provided.

In order to satisfy user privacy concerns, you should provide a UI element in your app which exposes the
ConnectableDeviceStore removeAll method.

To disable the ConnectableDeviceStore capabilities of Connect SDK, set this value to nil. This may be done at
the time of instantiation with DiscoveryManager.init (context, null);.

Map<String, ConnectableDevice> getAllDevices () List of all devices discovered by DiscoveryManager. Each Con-
nectableDevice object is keyed against its current IP address.

Map<String, ConnectableDevice> getCompatibleDevices () Filtered list of discovered ConnectableDevices, lim-
ited to devices that match at least one of the CapabilityFilters in the capabilityFilters array. Each ConnectableDe-
vice object is keyed against its current IP address.

PairingLevel getPairingLevel () The pairingLevel property determines whether capabilities that require pairing (such
as entering a PIN) will be available.

If pairinglevel is set to ConnectableDevicePairingLevelOn, ConnectableDevices that require pairing will
prompt the user to pair when connecting to the ConnectableDevice.

If pairingLevel is set to ConnectableDevicePairingLevel Off (the default), connecting to the device will avoid
requiring pairing if possible but some capabilities may not be available.

void setPairingLevel (PairingLevel pairingLevel) The pairinglevel property determines whether capabilities that
require pairing (such as entering a PIN) will be available.

If pairingLevel is set to ConnectableDevicePairingLevelOn, ConnectableDevices that require pairing will
prompt the user to pair when connecting to the ConnectableDevice.

If pairinglevel is set to ConnectableDevicePairingLevelOff (the default), connecting to the device will avoid
requiring pairing if possible but some capabilities may not be available.

Parameters:

* pairinglLevel

Inherited Methods

void onDeviceReady (ConnectableDevice device) A ConnectableDevice sends out a ready message when all of its
connectable DeviceServices have been connected and are ready to receive commands.

Parameters:

¢ device — ConnectableDevice that is ready for commands.

5.10. API References 51

connectSDK

void onDeviceDisconnected (ConnectableDevice device) When all of a ConnectableDevice’s DeviceServices have
become disconnected, the disconnected message is sent.

Parameters:
¢ device — ConnectableDevice that has been disconnected.

void onPairingRequired (ConnectableDevice device, DeviceService service, PairingType pairingType)
DeviceService listener proxy method.

This method is called when a DeviceService tries to connect and finds out that it requires pairing information
from the user.

Parameters:
» device — ConnectableDevice containing the DeviceService
* service — DeviceService that requires pairing
* pairingType — DeviceServicePairingType that the DeviceService requires

void onCapabilityUpdated (ConnectableDevice device, List<String> added, List<String> removed) When a
ConnectableDevice finds & loses DeviceServices, that ConnectableDevice will experience a change in its
collective capabilities list. When such a change occurs, this message will be sent with arrays of capabilities that
were added & removed.

This message will allow you to decide when to stop/start interacting with a ConnectableDevice, based off of its
supported capabilities.

Parameters:
¢ device — ConnectableDevice that has experienced a change in capabilities
 added — List<String> of capabilities that are new to the ConnectableDevice
» removed — List<String> of capabilities that the ConnectableDevice has lost

void onConnectionFailed (ConnectableDevice device, ServiceCommandError error) This method is called when
the connection to the ConnectableDevice has failed.

Parameters:
¢ device — ConnectableDevice that has failed to connect
* error — ServiceCommandError with a description of the failure

void onServiceAdded (DiscoveryProvider provider, ServiceDescription serviceDescription) This method is called
when the DiscoveryProvider discovers a service that matches one of its DeviceService filters. The Ser-
viceDescription is created and passed to the listener (which should be the DiscoveryManager). The Ser-
viceDescription is used to create a DeviceService, which is then attached to a ConnectableDevice object.

Parameters:
* provider — DiscoveryProvider that found the service
* serviceDescription

void onServiceRemoved (DiscoveryProvider provider, ServiceDescription serviceDescription) This method is
called when the DiscoveryProvider’s internal mechanism loses reference to a service that matches one of its
DeviceService filters.

Parameters:
« provider — DiscoveryProvider that lost the service

e serviceDescription

52 Chapter 5. Promote Your TV App

connectSDK

void onServiceDiscoveryFailed (DiscoveryProvider provider, ServicecCommandError error) This method is
called on any error/failure within the DiscoveryProvider.

Parameters:
e provider — DiscoveryProvider that failed
* error — ServiceCommandError providing a information about the failure
void onServiceConfigUpdate (ServiceConfig serviceConfig) Parameters:

* serviceConfig

DiscoveryManagerListener

com.connectsdk.discovery.DiscoveryManagerListener

Overview

The DiscoveryManagerListener will receive events on the addition/removal/update of ConnectableDevice objects.

In Depth

It is important to note that, unless you are implementing your own device picker, this listener is not needed in your
code. Connect SDK’s DevicePicker internally acts a separate listener to the DiscoveryManager and handles all of the
same method calls.

Methods

void onDeviceAdded (DiscoveryManager manager, ConnectableDevice device) This method will be fired upon the
first discovery of one of a ConnectableDevice’s DeviceServices.

Parameters:
* manager — DiscoveryManager that found device
¢ device — ConnectableDevice that was found

void onDeviceUpdated (DiscoveryManager manager, ConnectableDevice device) This method is called when a
ConnectableDevice gains or loses a DeviceService in discovery.

Parameters:
* manager — DiscoveryManager that updated device
¢ device — ConnectableDevice that was updated

void onDeviceRemoved (DiscoveryManager manager, ConnectableDevice device) This method is called when
connections to all of a ConnectableDevice’s DeviceServices are lost. This will usually happen when a device is
powered off or loses internet connectivity.

Parameters:
* manager — DiscoveryManager that lost device

¢ device — ConnectableDevice that was lost

5.10. API References 53

connectSDK

void onDiscoveryFailed (DiscoveryManager manager, ServiceCommandError error) In the event of an error in the
discovery phase, this method will be called.

Parameters:
* manager — DiscoveryManager that experienced the error
e error — NSError with a description of the failure
PairingLevel
com.connectsdk.discovery.DiscoveryManager.PairingLevel

Describes a pairing level for a DeviceService. It’s used by a DiscoveryManager and all services.

Properties

OFF Specifies that pairing is off. DeviceService will never try to pair with a first screen device.

ON Specifies that pairing is on. DeviceService will try to pair if it is required by a first screen device.

PairingType

com.connectsdk.service.DeviceService.PairingType

Enumerates available pairing types. It is used by a DeviceService for implementing pairing strategy.

Properties

NONE DeviceService doesn’t require pairing
FIRST_SCREEN In this mode user must confirm pairing on the first screen device (e.g. an alert on a TV)
PIN_CODE In this mode user must enter a pin code from a mobile device and send it to the first screen device

MIXED In this mode user can either enter a pin code from a mobile device or confirm pairing on the TV

5.10.2 Device

ConnectableDevice
com.connectsdk.device.ConnectableDevice
Overview

ConnectableDevice serves as a normalization layer between your app and each of the device’s services. It consolidates
a lot of key data about the physical device and provides access to underlying functionality.

54 Chapter 5. Promote Your TV App

connectSDK

In Depth

ConnectableDevice consolidates some key information about the physical device, including model name, friendly
name, ip address, connected DeviceService names, etc. In some cases, it is not possible to accurately select which
DeviceService has the best friendly name, model name, etc. In these cases, the values of these properties are dependent
upon the order of DeviceService discovery.

To be informed of any ready/pairing/disconnect messages from each of the DeviceService, you must set a listener.

ConnectableDevice exposes capabilities that exist in the underlying DeviceServices such as TV Control, Media Player,
Media Control, Volume Control, etc. These capabilities, when accessed through the ConnectableDevice, will be
automatically chosen from the most suitable DeviceService by using that DeviceService’s CapabilityPriorityLevel.

Methods

void setPairingType (PairingType pairingType) set desirable pairing type for all services
Parameters:
e pairingType

void addService (DeviceService service) Adds a DeviceService to the ConnectableDevice instance. Only one in-
stance of each DeviceService type (webOS, Netcast, etc) may be attached to a single ConnectableDevice in-
stance. If a device contains your service type already, your service will not be added.

Parameters:
* service — DeviceService to be added
void removeService (DeviceService service) Removes a DeviceService from the ConnectableDevice instance.
Parameters:
e service — DeviceService to be removed
void removeServiceWithld (String serviceld) Removes a DeviceService from the ConnectableDevice instance.
Parameters:
¢ serviceld — ID of the DeviceService to be removed (DLNA, webOS TV, etc)

Collection<DeviceService> getServices () Array of all currently discovered DeviceServices this ConnectableDevice
has associated with it.

DeviceService getServiceByName (String serviceName) Obtains a service from the ConnectableDevice with the
provided serviceName

Parameters:
» serviceName — Service ID of the targeted DeviceService (webOS, Netcast, DLNA, etc)
Returns: DeviceService with the specified serviceName or nil, if none exists

void removeServiceByName (String serviceName) Removes a DeviceService form the ConnectableDevice in-
stance. serviceName is used as the identifier because only one instance of each DeviceService type may be
attached to a single ConnectableDevice instance.

Parameters:
¢ serviceName — Name of the DeviceService to be removed from the ConnectableDevice.

DeviceService getServiceWithUUID (String serviceUUID) Returns a DeviceService from the ConnectableDevice
instance. serviceUUID is used as the identifier because only one instance of each DeviceService type may be
attached to a single ConnectableDevice instance.

5.10. API References 55

connectSDK

Parameters:
¢ serviceUUID — UUID of the DeviceService to be returned

void addListener (ConnectableDeviceListener listener) Adds the ConnectableDeviceListener to the list of listeners
for this ConnectableDevice to receive certain events.

Parameters:
* listener — ConnectableDeviceListener to listen to device events (connect, disconnect, ready, etc)

void setListener (ConnectableDeviceListener listener) Clears the array of listeners and adds the provided
listener to the array. If 1istener is null, the array will be empty.

This method is deprecated. Since version 1.2.1, use ConnectableDevice: :addListener (ConnectableDevicelList
listener) instead

Parameters:
* listener — ConnectableDeviceListener to listen to device events (connect, disconnect, ready, etc)

void removeListener (ConnectableDeviceListener listener) Removes a previously added ConenctableDeviceLis-
tener from the list of listeners for this ConnectableDevice.

Parameters:
e listener — ConnectableDeviceListener to be removed
List<ConnectableDeviceListener> getListeners ()

void connect () Enumerates through all DeviceServices and attempts to connect to each of them. When all of a
ConnectableDevice’s DeviceServices are ready to receive commands, the ConnectableDevice will send a onDe-
viceReady message to its listener.

It is always necessary to call connect on a ConnectableDevice, even if it contains no connectable DeviceServices.
void disconnect () Enumerates through all DeviceServices and attempts to disconnect from each of them.

boolean isConnectable () Whether the device has any DeviceServices that require an active connection (websocket,
HTTP registration, etc)

void sendPairingKey (String pairingKey) Sends a pairing key to all discovered device services.
Parameters:
* pairingKey — Pairing key to send to services.

void cancelPairing () Explicitly cancels pairing on all services that require pairing. In some services, this will hide a
prompt that is displaying on the device.

List<String> getCapabilities () A combined list of all capabilities that are supported among the detected DeviceSer-
vices.

boolean hasCapability (String capability) Test to see if the capabilities array contains a given capability. See the
individual Capability classes for acceptable capability values.

It is possible to append a wildcard search term . Any to the end of the search term. This method will return true
for capabilities that match the term up to the wildcard.

Example: Launcher.App.Any
Parameters:

e capability — Capability to test against

56 Chapter 5. Promote Your TV App

connectSDK

boolean hasAnyCapability (String... capabilities) Test to see if the capabilities array contains at least one capabil-
ity in a given set of capabilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
* capabilities — Array of capabilities to test against

boolean hasCapabilities (List<String> capabilities) Test to see if the capabilities array contains a given set of capa-
bilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
e capabilities — Array of capabilities to test against

boolean hasCapabilities (String. .. capabilites) Test to see if the capabilities array contains a given set of capabili-
ties. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
* capabilites — Array of capabilities to test against

Launcher getLauncher () Accessor for highest priority Launcher object This method is deprecated. Use
ConnectableDevice: :getCapability (Class<T> controllerClass) method instead

MediaPlayer getMediaPlayer () Accessor for highest priority MediaPlayer object This method is deprecated. Use
ConnectableDevice: :getCapability (Class<T> controllerClass) method instead

MediaControl getMediaControl () Accessor for highest priority MediaControl object This method is deprecated.
Use ConnectableDevice: :getCapability (Class<T> controllerClass) method instead

PlaylistControl getPlaylistControl () Accessor for highest priority PlaylistControl object This method is deprecated.
Use ConnectableDevice: :getCapability (Class<T> controllerClass) method instead

VolumeControl getVolumeControl () Accessor for highest priority VolumeControl object This method is deprecated.
Use ConnectableDevice: :getCapability (Class<T> controllerClass) method instead

WebAppLauncher getWebAppLauncher () Accessor for highest priority WebAppLauncher object This method
is deprecated. @ Use ConnectableDevice::getCapability (Class<T> controllerClass)
method instead

TVControl getTVControl () Accessor for highest priority TVControl object This method is deprecated. Use
ConnectableDevice: :getCapability (Class<T> controllerClass) method instead

ToastControl getToastControl () Accessor for highest priority ToastControl object This method is deprecated. Use
ConnectableDevice: :getCapability (Class<T> controllerClass) method instead

TextInputControl getTextInputControl () Accessor for highest priority TextInputControl object This method is dep-
recated. Use ConnectableDevice: :getCapability (Class<T> controllerClass) methodin-
stead

MouseControl getMouseControl () Accessor for highest priority MouseControl object This method is deprecated.
Use ConnectableDevice: :getCapability (Class<T> controllerClass) method instead

ExternallnputControl getExternallnputControl () Accessor for highest priority ExternallnputControl ob-
ject This method is deprecated. Use ConnectableDevice::getCapability (Class<T>
controllerClass) method instead

PowerControl getPowerControl () Accessor for highest priority PowerLauncher object This method is deprecated.
Use ConnectableDevice: :getCapability (Class<T> controllerClass) method instead

5.10. API References 57

connectSDK

KeyControl getKeyControl () Accessor for highest priority KeyControl object This method is deprecated. Use
ConnectableDevice: :getCapability (Class<T> controllerClass) method instead

void setIpAddress (String ipAddress) Sets the IP address of the ConnectableDevice.
Parameters:
* ipAddress — IP address of the ConnectableDevice
String getIpAddress () Gets the Current IP address of the ConnectableDevice.
void setFriendlyName (String friendlyName) Sets an estimate of the ConnectableDevice’s current friendly name.
Parameters:
¢ friendlyName — Friendly name of the device
String getFriendlyName () Gets an estimate of the ConnectableDevice’s current friendly name.

void setLastKnownIPAddress (String lastKnownIPAddress) Sets the last IP address this ConnectableDevice was
discovered at.

Parameters:
¢ JastKnownIPAddress — Last known IP address of the device & it’s services
String getLastKnownIPAddress () Gets the last IP address this ConnectableDevice was discovered at.

void setLastSeenOnWifi (String lastSeenOnWifi) Sets the name of the last wireless network this ConnectableDe-
vice was discovered on.

Parameters:
¢ lastSeenOnWifi — Last Wi-Fi network this device & it’s services were discovered on
String getLastSeenOnWifi () Gets the name of the last wireless network this ConnectableDevice was discovered on.

void setLastConnected (long lastConnected) Sets the last time (in milli seconds from 1970) that this Con-
nectableDevice was connected to.

Parameters:
¢ lastConnected — Last connected time

long getLastConnected () Gets the last time (in milli seconds from 1970) that this ConnectableDevice was connected
to.

void setLastDetection (long lastDetection) Sets the last time (in milli seconds from 1970) that this ConnectableDe-
vice was detected.

Parameters:
e lastDetection — Last detected time
long getLastDetection () Gets the last time (in milli seconds from 1970) that this ConnectableDevice was detected.
void setModelName (String modelName) Sets an estimate of the ConnectableDevice’s current model name.
Parameters:
¢ modelName — Model name of the ConnectableDevice
String getModelName () Gets an estimate of the ConnectableDevice’s current model name.
void setModelNumber (String modelNumber) Sets an estimate of the ConnectableDevice’s current model number.
Parameters:

¢ modelNumber — Model number of the ConnectableDevice

58 Chapter 5. Promote Your TV App

connectSDK

String getModelNumber () Gets an estimate of the ConnectableDevice’s current model number.

void setld (String id) Sets the universally unique id of this particular ConnectableDevice object. This is used inter-
nally in the SDK and should not be used.

Parameters:
¢ id — New id for the ConnectableDevice

String getld () Universally unique id of this particular ConnectableDevice object, persists between sessions in Con-
nectableDeviceStore for connected devices

public<T extends CapabilityMethods> T getCapability (Class<T> controllerClass) Get a capability with the
highest priority from a device. If device doesn’t have such capability then returns null.

Parameters:
« controllerClass — type of capability

Returns: capability implementation

Inherited Methods

void onConnectionRequired (DeviceService service) If the DeviceService requires an active connection (web-
socket, pairing, etc) this method will be called.

Parameters:
* service — DeviceService that requires connection

void onConnectionSuccess (DeviceService service) After the connection has been successfully established, and after
pairing (if applicable), this method will be called.

Parameters:
* service — DeviceService that was successfully connected

void onCapabilitiesUpdated (DeviceService service, List<String> added, List<String> removed) There are situa-
tions in which a DeviceService will update the capabilities it supports and propagate these changes to the De-
viceService. Such situations include:

* on discovery, DIALService will reach out to detect if certain apps are installed
* on discovery, certain DeviceServices need to reach out for version & region information

For more information on this particular method, see ConnectableDeviceDelegate’s connectableDe-
vice:capabilitiesAdded:removed: method.

Parameters:
* service — DeviceService that has experienced a change in capabilities
* added — List<String> of capabilities that are new to the DeviceService
» removed — List<String> of capabilities that the DeviceService has lost

void onDisconnect (DeviceService service, Error error) This method will be called on any disconnection. If error is
nil, then the connection was clean and likely triggered by the responsible DiscoveryProvider or by the user.

Parameters:
¢ service — DeviceService that disconnected

* error — Error with a description of any errors causing the disconnect. If this value is nil, then the disconnect
was clean/expected.

5.10. API References 59

connectSDK

void onConnectionFailure (DeviceService service, Error error) Will be called if the DeviceService fails to establish
a connection.

Parameters:
¢ service — DeviceService which has failed to connect
* error — Error with a description of the failure

void onPairingRequired (DeviceService service, PairingType pairingType, Object pairingData) 1f the DeviceSer-
vice requires pairing, valuable data will be passed to the delegate via this method.

Parameters:
* service — DeviceService that requires pairing
e pairingType — PairingType that the DeviceService requires
* pairingData — Any data that might be required for the pairing process, will usually be nil
void onPairingSuccess (DeviceService service)
Parameters:
* service
void onPairingFailed (DeviceService service, Error error) If there is any error in pairing, this method will be called.
Parameters:
* service — DeviceService that has failed to complete pairing

* error — Error with a description of the failure

ConnectableDevicelListener

com.connectsdk.device.ConnectableDeviceListener

ConnectableDeviceListener allows for a class to receive messages about ConnectableDevice connection, disconnect,
and update events.

It also serves as a proxy for message handling when connecting and pairing with each of a ConnectableDevice’s
DeviceServices. Each of the DeviceService proxy methods are optional and would only be useful in a few use cases.

* providing your own Ul for the pairing process.

* interacting directly and exclusively with a single type of DeviceService

Methods

void onDeviceReady (ConnectableDevice device) A ConnectableDevice sends out a ready message when all of its
connectable DeviceServices have been connected and are ready to receive commands.

Parameters:
* device — ConnectableDevice that is ready for commands.

void onDeviceDisconnected (ConnectableDevice device) When all of a ConnectableDevice’s DeviceServices have
become disconnected, the disconnected message is sent.

Parameters:

¢ device — ConnectableDevice that has been disconnected.

60 Chapter 5. Promote Your TV App

connectSDK

void onPairingRequired (ConnectableDevice device, DeviceService service, PairingType pairingType)
DeviceService listener proxy method.

This method is called when a DeviceService tries to connect and finds out that it requires pairing information
from the user.

Parameters:
* device — ConnectableDevice containing the DeviceService
* service — DeviceService that requires pairing
e pairingType — DeviceServicePairingType that the DeviceService requires

void onCapabilityUpdated (ConnectableDevice device, List<String> added, List<String> removed) When a
ConnectableDevice finds & loses DeviceServices, that ConnectableDevice will experience a change in its
collective capabilities list. When such a change occurs, this message will be sent with arrays of capabilities that
were added & removed.

This message will allow you to decide when to stop/start interacting with a ConnectableDevice, based off of its
supported capabilities.

Parameters:
» device — ConnectableDevice that has experienced a change in capabilities
 added — List<String> of capabilities that are new to the ConnectableDevice
» removed — List<String> of capabilities that the ConnectableDevice has lost

void onConnectionFailed (ConnectableDevice device, ServiceCommandError error) This method is called when
the connection to the ConnectableDevice has failed.

Parameters:
¢ device — ConnectableDevice that has failed to connect

* error — ServiceCommandError with a description of the failure

ServiceSubscription

com.connectsdk.service.command.ServiceSubscription

Methods

void unsubscribe ()
T addListener (T listener)
Parameters:
* listener — (optional) T with methods to be called on success or failure
void removeListener (T listener)
Parameters:
* listener — (optional) T with methods to be called on success or failure

List<T> getListeners ()

5.10. API References 61

connectSDK

5.10.3 Device Services

AirPlayService

com.connectsdk.service.AirPlayService

extends DeviceService

AirPlayService provides media playback/control & web app launching (iOS only) capabilities for Apple TV devices.
AirPlay-enabled speakers are not currently supported by Connect SDK.

Properties

final String X_APPLE_SESSION_ID = “X-Apple-Session-ID”
final String ID = “AirPlay”

Inner Classes

* PlaybackPositionListener

Methods

Capability PriorityLevel getPriorityLevel (Class<?extends CapabilityMethods > clazz) Parameters:
e clazz
AirPlayService (ServiceDescription serviceDescription, ServiceConfig serviceConfig) Parameters:
* serviceDescription
* serviceConfig
MediaControl getMediaControl () Get MediaControl implementation
Returns: MediaControl
Capability PriorityLevel getMediaControlCapabilityLevel () Get a capability priority for current implementation
Returns: CapabilityPriorityLevel
void play (ResponseListener <Object> listener) Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener) Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (ResponseListener <Object> listener) Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener) Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

62 Chapter 5. Promote Your TV App

connectSDK

void previous (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl::previous (ResponselListener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void next (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl: :next (ResponselListener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void seek (long position, ResponseListener <Object> listener) Parameters:
* position — The new position, in milliseconds from the beginning of the stream
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getPosition (final :doc: PositionListener <and-positionlistener> listener) Parameters:
¢ listener — (optional) final PositionListener with methods to be called on success or failure

void getPlayState (final PlayStateListener listener) AirPlay has the same response for Buffering and Finished states
that’s why this method always returns Finished state for video which is not ready to play.

Parameters:
* listener — (optional) final PlayStateListener with methods to be called on success or failure
void getDuration (final DurationListener listener) Parameters:
* listener — (optional) final DurationListener with methods to be called on success or failure

ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener) Subscribe for playback
state changes

Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (MedialnfoListener listener) Parameters:
¢ listener — (optional) MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener) Parameters:
* listener — (optional) MedialnfoListener with methods to be called on success or failure

void displayImage (final String url, String mimeType, String title, String description, String iconSrc, final LaunchListener listene
Parameters:

e url

* mimeType
e title

e description
* iconSrc

* listener — (optional) final LaunchListener with methods to be called on success or failure

5.10. API References 63

connectSDK

void displayImage (Medialnfo medialnfo, LaunchListener listener) Parameters:
¢ medialnfo
* listener — (optional) LaunchListener with methods to be called on success or failure

void playVideo (final String url, String mimeType, String title, String description, String iconSrc, boolean shouldLoop, final Laun
Parameters:

e url

* mimeType

* title

e description

* iconSrc

* shouldLoop

* listener — (optional) final LaunchListener with methods to be called on success or failure

void playMedia (String url, String mimeType, String title, String description, String iconSrc, boolean shouldLoop, LaunchListene
This method is deprecated. Use MediaPlayer: :playMedia (MediaInfo mediaInfo, boolean
shouldLoop, LaunchListener listener) instead.

Parameters:
e url
* mimeType
o title
e description
e iconSrc
* shouldLoop
* listener — (optional) LaunchListener with methods to be called on success or failure
void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener) Parameters:
* medialnfo
* shouldLoop
* listener — (optional) LaunchListener with methods to be called on success or failure
void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener) Parameters:
* JaunchSession
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void sendCommand (final ServicecCommand<?> serviceCommand) Parameters:
 serviceCommand
void sendPairingKey (String pairingKey) Parameters:
¢ pairingKey
boolean isConnectable ()
boolean isConnected ()

void connect ()

64 Chapter 5. Promote Your TV App

connectSDK

void disconnect ()
void onLoseReachability (DeviceServiceReachability reachability) Parameters:
* reachability

static DiscoveryFilter discoveryFilter ()

Inherited Methods

void connect () Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceListener. If the connection attempt reveals that pairing is required, the DeviceServiceListener will
also be notified in that event.

void disconnect () Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceListener.

boolean isConnected () Whether the DeviceService is currently connected
boolean isConnectable ()

void cancelPairing () Explicitly cancels pairing in services that require pairing. In some services, this will hide a
prompt that is displaying on the device.

void sendPairingKey (String pairingKey) Will attempt to pair with the DeviceService with the provided pairing-
Data. The failure/success will be reported back to the DeviceServiceListener.

Parameters:

* pairingKey — Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

List<String> getCapabilities ()

boolean hasCapability (String capability) Test to see if the capabilities array contains a given capability. See the
individual Capability classes for acceptable capability values.

It is possible to append a wildcard search term . Any to the end of the search term. This method will return true
for capabilities that match the term up to the wildcard.

Example: Launcher.App.Any
Parameters:
e capability — Capability to test against

boolean hasAnyCapability (String... capabilities) Test to see if the capabilities array contains at least one capabil-
ity in a given set of capabilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
e capabilities — Set of capabilities to test against

boolean hasCapabilities (List<String> capabilities) Test to see if the capabilities array contains a given set of capa-
bilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:

* capabilities — List of capabilities to test against

5.10. API References 65

connectSDK

ServiceDescription getServiceDescription ()

ServiceConfig getServiceConfig ()

JSONObject toJSONODbject ()

String getServiceName () Name of the DeviceService (webOS, Chromecast, etc)

void closeLaunchSession (LaunchSession launchSession, ResponseListener <Object> listener) Closes the ses-
sion on the first screen device. Depending on the sessionType, the associated service will have different ways of
handling the close functionality.

Parameters:
¢ launchSession — LaunchSession to close
* listener — (optional) listener to be called on success/failure
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (MedialnfoListener listener) Parameters:
¢ listener — (optional) MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener) Parameters:
* listener — (optional) MedialnfoListener with methods to be called on success or failure

void displayImage (Medialnfo medialnfo, LaunchListener listener) Display an image on the device. Not all de-
vices support all of the parameters — supply as many as you have available.

Related capabilities:
* MediaPlayer.Display.Image
e MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description
* MediaPlayer.MediaData.Thumbnail
e MediaPlayer.MediaData.MimeType
Parameters:
» medialnfo — Object of Medialnfo class which includes all the information about an image to display.
* listener — (optional) LaunchListener with methods to be called on success or failure

void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener) Play an audio or video file
on the device. Not all devices support all of the parameters — supply as many as you have available.

Related capabilities:
* MediaPlayer.Play.Video
* MediaPlayer.Play.Audio
* MediaPlayer.MediaData.Title
e MediaPlayer.MediaData.Description
e MediaPlayer.MediaData.Thumbnail
e MediaPlayer.MediaData.MimeType

Parameters:

66 Chapter 5. Promote Your TV App

connectSDK

» medialnfo — Object of Medialnfo class which includes all the information about an image to display.
* shouldLoop — Whether to automatically loop playback
* listener — (optional) LaunchListener with methods to be called on success or failure

void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener) Close a running media ses-
sion. Because media is handled differently on different platforms, it is required to keep track of LaunchSession
and MediaControl objects to control that media session in the future. LaunchSession will be required to close
the media and mediaControl will be required to control the media.

Related capabilities:
e MediaPlayer.Close
Parameters:
* launchSession — LaunchSession object for use in closing media instance
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
MediaControl getMediaControl ()
Get MediaControl implementation
Returns: MediaControl
Capability PriorityLevel getMediaControlCapabilityLevel ()
Get a capability priority for current implementation
Returns: CapabilityPriorityLevel
void play (ResponseListener <Object> listener) Send play command.
Related capabilities:
* MediaControl.Play
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener) Send pause command.
Related capabilities:
* MediaControl.Pause
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (ResponseListener <Object> listener) Send play command.
Related capabilities:
e MediaControl.Stop
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener) Send rewind command.
Related capabilities:
¢ MediaControl.Rewind

Parameters:

5.10. API References 67

connectSDK

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener) Send play command.
Related capabilities:
¢ MediaControl.FastForward
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void previous (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl::previous (ResponselListener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void next (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl: :next (ResponselListener<Object> listener) instead.

Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void seek (long position, ResponseListener <Object> listener) Seeks to a new position within the current media
item

Related capabilities:

* MediaControl.Seek
Parameters:

e position — The new position, in milliseconds from the beginning of the stream

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void getDuration (DurationListener listener) Get the current media duration in milliseconds

Parameters:

* listener — (optional) DurationListener with methods to be called on success or failure

void getPosition (:doc: PositionListener <and-positionlistener> listener) Get the current playback position in mil-
liseconds

Parameters:
* listener — (optional) PositionListener with methods to be called on success or failure
void getPlayState (PlayStateListener listener) Get the current state of playback
Parameters:
* listener — (optional) PlayStateListener with methods to be called on success or failure

ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener) Subscribe for playback
state changes

Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>
void onLoseReachability (DeviceServiceReachability reachability) Parameters:

e reachability

68 Chapter 5. Promote Your TV App

connectSDK

void unsubscribe (URLServiceSubscription<?> subscription) Parameters:
* subscription
void sendCommand (ServicecCommand<?> command) Parameters:

e command

CastService

com.connectsdk.service.CastService
extends DeviceService

CastService provides capabilities for Google Chromecast devices. CastService acts as a layer on top of Google’s own
Cast SDK, and requires the Cast SDK library to function. CastService provides the following functionality:

* Media playback

¢ Media control

e Web app launching & two-way communication
* Volume control

Using Connect SDK for discovery/control of Chromecast devices will result in your app complying with the Google
Cast SDK terms of service.

To learn more about Cast SDK, visit the Google Cast SDK Developer site.

Inner Classes

* ApplicationConnectionResultCallback
* CastListener

¢ ConnectionCallbacks

* ConnectionFailedListener

* ConnectionListener

* LaunchWebAppListener

Methods

CastService (ServiceDescription serviceDescription, ServiceConfig serviceConfig)
Parameters:
* serviceDescription
* serviceConfig
String getServiceName ()
Capability PriorityLevel getPriorityLevel (Class<?extends CapabilityMethods > clazz) Parameters:
e clazz
void connect ()

void disconnect ()

5.10. API References 69

https://developers.google.com/cast/docs/terms
https://developers.google.com/cast/

connectSDK

MediaControl getMediaControl () Get MediaControl implementation
Returns: MediaControl
Capability PriorityLevel getMediaControlCapabilityLevel () Get a capability priority for current implementation
Returns: CapabilityPriorityLevel
void play (final ResponseListener <Object> listener) Parameters:
* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void pause (final ResponseListener <Object> listener) Parameters:
* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void stop (final ResponseListener <Object> listener) Parameters:
« listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener) Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener) Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void previous (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl::previous (ResponselListener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void next (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl: :next (ResponselListener<Object> listener) instead.

Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void seek (final long position, final ResponseListener <Object> listener) Parameters:

* position

« listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void getDuration (final DurationListener listener) Parameters:

e listener — (optional) final DurationListener with methods to be called on success or failure
void getPosition (final PositionListener listener) Parameters:

* listener — (optional) final PositionListener with methods to be called on success or failure
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (MedialnfoListener listener) Parameters:

* listener — (optional) MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener) Parameters:

¢ listener — (optional) MedialnfoListener with methods to be called on success or failure

70 Chapter 5. Promote Your TV App

connectSDK

void displayImage (String url, String mimeType, String title, String description, String iconSrc, LaunchListener listener)
This method is deprecated. Use MediaPlayer::displayImage (MediaInfo medialInfo,
LaunchListener listener) instead.

Parameters:
e url
* mimeType
o title
e description
* iconSrc
¢ listener — (optional) LaunchListener with methods to be called on success or failure
void displayImage (Medialnfo medialnfo, LaunchListener listener) Parameters:
* medialnfo
¢ listener — (optional) LaunchListener with methods to be called on success or failure

void playMedia (String url, String mimeType, String ftitle, String description, String iconSrc, boolean shouldLoop, LaunchListene
This method is deprecated. Use MediaPlayer: :playMedia (MediaInfo mediaInfo, boolean
shouldLoop, LaunchListener listener) instead.

Parameters:
e url
* mimeType
o title
¢ description
* iconSrc
¢ shouldLoop
* listener — (optional) LaunchListener with methods to be called on success or failure
void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener) Parameters:
* medialnfo
¢ shouldLoop
¢ listener — (optional) LaunchListener with methods to be called on success or failure
void closeMedia (final LaunchSession launchSession, final ResponseListener <Object> listener) Parameters:
¢ launchSession
* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
WebAppLauncher getWebAppLauncher ()
CapabilityPriorityLevel getWebAppLauncherCapabilityLevel ()
void launchWebApp (String webAppld, WebAppSession.LaunchListener listener) Parameters:
* webAppld
* listener — (optional) WebAppSession.LaunchListener with methods to be called on success or failure

void launchWebApp (final String webAppld, final boolean relaunchIfRunning, final WebAppSession.LaunchListener listener)
Parameters:

5.10. API References 71

connectSDK

* webAppld
¢ relaunchIfRunning
* listener — (optional) final WebAppSession.LaunchListener with methods to be called on success or failure

void launchWebApp (String webAppld, JSONObject params, WebAppSession.LaunchListener listener)
Parameters:

* webAppld
* params
* listener — (optional) WebAppSession.LaunchListener with methods to be called on success or failure

void launchWebApp (String webAppld, JSONODbject params, boolean relaunchIlfRunning, WebAppSession.LaunchListener lister
Parameters:

* webAppld

* params

¢ relaunchIfRunning

* listener — (optional) WebAppSession.LaunchListener with methods to be called on success or failure
void requestStatus (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void joinApplication (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure

void joinWebApp (final LaunchSession webAppLaunchSession, final WebAppSession.LaunchListener listener)
Parameters:

* webAppLaunchSession

* listener — (optional) final WebAppSession.LaunchListener with methods to be called on success or failure
void joinWebApp (String webAppld, WebAppSession.LaunchListener listener) Parameters:

e webAppld

* listener — (optional) WebAppSession.LaunchListener with methods to be called on success or failure
void closeWebApp (LaunchSession launchSession, final ResponseListener <Object> listener) Parameters:

* launchSession

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void pinWebApp (String webAppld, ResponseListener <Object> listener) Parameters:

* webAppld

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void unPinWebApp (String webAppld, ResponseListener <Object> listener) Parameters:

* webAppld

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void isWebAppPinned (String webAppld, WebAppPinStatusListener listener) Parameters:

* webAppld

* listener — (optional) WebAppPinStatusListener with methods to be called on success or failure

72 Chapter 5. Promote Your TV App

connectSDK

ServiceSubscription <WebAppPinStatusListener> subscribelsWebAppPinned (String webAppld, WebAppPinStatusListener listenei
Parameters:

* webAppld

* listener — (optional) WebAppPinStatusListener with methods to be called on success or failure
VolumeControl getVolumeControl ()
CapabilityPriorityLevel getVolumeControlCapabilityLevel ()
void volumeUp (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void volumeDown (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void setVolume (final float volume, final ResponseListener <Object> listener) Parameters:

* volume

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void getVolume (VolumeListener listener) Parameters:

* listener — (optional) VolumeListener with methods to be called on success or failure
void setMute (final boolean isMute, final ResponseListener <Object> listener) Parameters:

* isMute

¢ listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void getMute (final MuteListener listener) Parameters:

¢ listener — (optional) final MuteListener with methods to be called on success or failure
ServiceSubscription <VolumeListener> subscribeVolume (VolumeListener listener) Parameters:

* listener — (optional) VolumeListener with methods to be called on success or failure
ServiceSubscription <MuteListener> subscribeMute (MuteListener listener) Parameters:

¢ listener — (optional) MuteListener with methods to be called on success or failure
void getPlayState (PlayStateListener listener) Get the current state of playback

Parameters:

* listener — (optional) PlayStateListener with methods to be called on success or failure
GoogleApiClient getApiClient ()
boolean isConnectable ()
boolean isConnected ()

ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener) Subscribe for playback
state changes

Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>
void unsubscribe (URLServiceSubscription<?> subscription) Parameters:

e subscription

5.10. API References 73

connectSDK

List<URLServiceSubscription<?>> getSubscriptions ()

void setSubscriptions (List< URLServiceSubscription<?>> subscriptions) Parameters:
* subscriptions

static DiscoveryFilter discoveryFilter ()

static void setApplicationID (String id) Parameters:
e id

static String getApplicationID ()

Inherited Methods

void connect () Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceListener. If the connection attempt reveals that pairing is required, the DeviceServiceListener will
also be notified in that event.

void disconnect () Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceListener.

boolean isConnected () Whether the DeviceService is currently connected
boolean isConnectable ()

void cancelPairing () Explicitly cancels pairing in services that require pairing. In some services, this will hide a
prompt that is displaying on the device.

void sendPairingKey (String pairingKey) Will attempt to pair with the DeviceService with the provided pairing-
Data. The failure/success will be reported back to the DeviceServiceListener.

Parameters:

* pairingKey — Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

List<String> getCapabilities ()

boolean hasCapability (String capability) Test to see if the capabilities array contains a given capability. See the
individual Capability classes for acceptable capability values.

It is possible to append a wildcard search term . Any to the end of the search term. This method will return true
for capabilities that match the term up to the wildcard.

Example: Launcher.App.Any
Parameters:
e capability — Capability to test against

boolean hasAnyCapability (String... capabilities) Test to see if the capabilities array contains at least one capabil-
ity in a given set of capabilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
e capabilities — Set of capabilities to test against

boolean hasCapabilities (List<String> capabilities) Test to see if the capabilities array contains a given set of capa-
bilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.

74 Chapter 5. Promote Your TV App

connectSDK

Parameters:
e capabilities — List of capabilities to test against
ServiceDescription getServiceDescription ()
ServiceConfig getServiceConfig ()
JSONObject toJSONObject ()
String getServiceName () Name of the DeviceService (webOS, Chromecast, etc)

void closeLaunchSession (LaunchSession launchSession, ResponseListener <Object> listener) Closes the ses-
sion on the first screen device. Depending on the sessionType, the associated service will have different ways of
handling the close functionality.

Parameters:
* JaunchSession — LaunchSession to close
* listener — (optional) listener to be called on success/failure
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (MedialnfoListener listener) Parameters:
* listener — (optional) MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener) Parameters:
* listener — (optional) MedialnfoListener with methods to be called on success or failure

void displayImage (Medialnfo medialnfo, LaunchListener listener) Display an image on the device. Not all de-
vices support all of the parameters — supply as many as you have available.

Related capabilities:
* MediaPlayer.Display.Image
e MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description
* MediaPlayer.MediaData.Thumbnail
* MediaPlayer.MediaData.MimeType
Parameters:
* medialnfo — Object of Medialnfo class which includes all the information about an image to display.
* listener — (optional) LaunchListener with methods to be called on success or failure

void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener) Play an audio or video file
on the device. Not all devices support all of the parameters — supply as many as you have available.

Related capabilities:
* MediaPlayer.Play.Video
e MediaPlayer.Play.Audio
e MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description

¢ MediaPlayer.MediaData.Thumbnail

5.10. API References 75

connectSDK

e MediaPlayer.MediaData.MimeType
Parameters:
» medialnfo — Object of Medialnfo class which includes all the information about an image to display.
¢ shouldLoop — Whether to automatically loop playback
¢ listener — (optional) LaunchListener with methods to be called on success or failure

void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener) Close a running media ses-
sion. Because media is handled differently on different platforms, it is required to keep track of LaunchSession
and MediaControl objects to control that media session in the future. LaunchSession will be required to close
the media and mediaControl will be required to control the media.

Related capabilities:
* MediaPlayer.Close
Parameters:
¢ launchSession — LaunchSession object for use in closing media instance
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
MediaControl getMediaControl () Get MediaControl implementation
Returns: MediaControl
CapabilityPriorityLevel getMediaControlCapabilityLevel () Get a capability priority for current implementation
Returns: CapabilityPriorityLevel
void play (ResponseListener <Object> listener) Send play command.
Related capabilities:
* MediaControl.Play
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener) Send pause command.
Related capabilities:
¢ MediaControl.Pause
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (ResponseListener <Object> listener) Send play command.
Related capabilities:
e MediaControl.Stop
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener) Send rewind command.
Related capabilities:
* MediaControl.Rewind

Parameters:

76 Chapter 5. Promote Your TV App

connectSDK

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener) Send play command.
Related capabilities:
¢ MediaControl.FastForward
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void previous (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl::previous (ResponselListener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void next (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl: :next (ResponselListener<Object> listener) instead.

Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void seek (long position, ResponseListener <Object> listener) Seeks to a new position within the current media
item

Related capabilities:
* MediaControl.Seek
Parameters:
e position — The new position, in milliseconds from the beginning of the stream
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getDuration (DurationListener listener) Get the current media duration in milliseconds
Parameters:
* listener — (optional) DurationListener with methods to be called on success or failure
void getPosition (PositionListener listener) Get the current playback position in milliseconds
Parameters:
* listener — (optional) PositionListener with methods to be called on success or failure
void getPlayState (PlayStateListener listener) Get the current state of playback
Parameters:
* listener — (optional) PlayStateListener with methods to be called on success or failure

ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener) Subscribe for playback
state changes

Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>
VolumeControl getVolumeControl ()

CapabilityPriorityLevel getVolumeControlCapabilityLevel ()

5.10. API References 77

connectSDK

void volumeUp (ResponseListener <Object> listener) Sends the volume up command to the device.
Related capabilities:
¢ VolumeControl.UpDown
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void volumeDown (ResponseListener <Object> listener) Sends the volume down command to the device.
Related capabilities:
e VolumeControl.UpDown
Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void setVolume (float volume, ResponseListener <Object> listener) Set the volume of the device.
Related capabilities:
* VolumeControl. Set
Parameters:
* volume — Volume as a float between 0.0 and 1.0
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getVolume (VolumeListener listener) Get the current volume of the device.
Related capabilities:
* VolumeControl.Get
Parameters:
* listener — (optional) VolumeListener with methods to be called on success or failure
void setMute (boolean isMute, ResponseListener <Object> listener) Set the current volume.
Related capabilities:
¢ VolumeControl.Mute.Set
Parameters:
e isMute
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getMute (MuteListener listener) Get the current mute state.
Related capabilities:
* VolumeControl.Mute.Get
Parameters:
* listener — (optional) MuteListener with methods to be called on success or failure

ServiceSubscription <VolumeListener> subscribeVolume (VolumeListener listener) Subscribe to the volume on the
TV.

Related capabilities:

e VolumeControl.Subscribe

78 Chapter 5. Promote Your TV App

connectSDK

Parameters:
¢ listener — (optional) VolumeListener with methods to be called on success or failure
ServiceSubscription <MuteListener> subscribeMute (MuteListener listener) Subscribe to the mute state on the TV.
Related capabilities:
* VolumeControl.Mute.Subscribe
Parameters:
* listener — (optional) MuteListener with methods to be called on success or failure
WebAppLauncher getWebAppLauncher ()
CapabilityPriorityLevel getWebAppLauncherCapabilityLevel ()
void launchWebApp (String webAppld, LaunchListener listener) Launch a web application on the TV.
Related capabilities:
* WebAppLauncher.Launch
* WebAppLauncher.Launch.Params —if launching with params
Parameters:
* webAppld — ID of web app assigned by platform vendor
¢ listener — (optional) LaunchListener with methods to be called on success or failure

void joinWebApp (LaunchSession webAppLaunchSession, LaunchListener listener) Join an active web app with-
out launching/relaunching. If the app is not running/joinable, the failure block will be called immediately.

Related capabilities:
* WebAppLauncher. Send
* WebAppLauncher.Receive
Parameters:
* webAppLaunchSession — LaunchSession for the web app to be joined
¢ listener — (optional) LaunchListener with methods to be called on success or failure

void closeWebApp (LaunchSession launchSession, ResponseListener <Object> listener) Closes a web app with
the provided LaunchSession.

Related capabilities:
* WebAppLauncher.Close
Parameters:
¢ launchSession — LaunchSession associated with the web app to be closed
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pinWebApp (String webAppld, ResponseListener <Object> listener) Parameters:
* webAppld
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void unPinWebApp (String webAppld, ResponseListener <Object> listener) Parameters:
* webAppld

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

5.10. API References 79

connectSDK

void isWebAppPinned (String webAppld, WebApp PinStatusListener listener) Parameters:
* webAppld
* listener — (optional) WebAppPinStatusListener with methods to be called on success or failure

ServiceSubscription <WebAppPinStatusListener> subscribelsWebAppPinned (String webAppld, WebAppPinStatusListener listene
Parameters:

* webAppld

« listener — (optional) WebAppPinStatusListener with methods to be called on success or failure
void onLoseReachability (DeviceServiceReachability reachability) Parameters:

e reachability
void unsubscribe (URLServiceSubscription<?> subscription) Parameters:

e subscription
void sendCommand (ServicecCommand<?> command) Parameters:

e command

DIALService

com.connectsdk.service.DIALService
extends DeviceService

DIALService is a full implementation of the DIscover And Launch (DIAL) protocol specification. DIALService is
used to launch & close apps on DIAL-enabled devices. It can also be used to probe for an app’s existence on a
DIAL-enabled device. DIAL commands occur over HTTP.

See the DIAL protocol specification for more information.

Properties

final String ID = “DIAL”

Methods

static void registerApp (String appld) Registers an app ID to be checked upon discovery of this device. If the app
is found on the target device, the DIALService will gain the “Launcher.” capability, where is the value of the
appld parameter.

This method must be called before starting DiscoveryManager for the first time.
Parameters:
* appld - ID of the app to be checked for
static DiscoveryFilter discoveryFilter ()
DIALService (ServiceDescription serviceDescription, ServiceConfig serviceConfig) Parameters:
* serviceDescription
* serviceConfig

Capability PriorityLevel getPriorityLevel (Class<?extends CapabilityMethods > clazz) Parameters:

80 Chapter 5. Promote Your TV App

http://www.dial-multiscreen.org/dial-protocol-specification

connectSDK

* clazz
void setServiceDescription (ServiceDescription serviceDescription) Parameters:
* serviceDescription
Launcher getLauncher ()
CapabilityPriorityLevel getLauncherCapabilityLevel ()
void launchApp (String appld, AppLaunchListener listener) Parameters:
e appld
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchAppWithInfo (AppInfo applInfo, AppLaunchListener listener) Parameters:
* applnfo
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchAppWithInfo (final AppInfo appInfo, Object params, final AppLaunchListener listener)
Parameters:

* applnfo
* params
* listener — (optional) final AppLaunchListener with methods to be called on success or failure
void launchBrowser (String url, AppLaunchListener listener) Parameters:
e url
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void closeApp (final LaunchSession launchSession, final ResponseListener <Object> listener) Parameters:
* JaunchSession
* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void launchYouTube (String contentld, AppLaunchListener listener) Parameters:
 contentld
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchYouTube (String contentld, float startTime, AppLaunchListener listener) Parameters:
 contentld
e startTime
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchHulu (String contentld, AppLaunchListener listener) Parameters:
* contentld
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchNetflix (final String contentld, App LaunchListener listener) Parameters: - contentld - listener — (op-
tional) AppLaunchListener with methods to be called on success or failure

void launchAppStore (String appld, AppLaunchListener listener) Parameters:
e appld

* listener — (optional) AppLaunchListener with methods to be called on success or failure

5.10. API References 81

connectSDK

void getAppList (AppListListener listener) Parameters:
* listener — (optional) AppListListener with methods to be called on success or failure
void getRunningApp (AppInfoListener listener) Parameters:
* listener — (optional) AppInfoListener with methods to be called on success or failure
ServiceSubscription <ApplInfoListener> subscribeRunningApp (AppInfoListener listener) Parameters:
* listener — (optional) AppInfoListener with methods to be called on success or failure
void getAppState (LaunchSession launchSession, AppStateListener listener) Parameters:
¢ launchSession
* listener — (optional) AppStateListener with methods to be called on success or failure

ServiceSubscription <AppStateListener> subscribeAppState (LaunchSession launchSession, com.connectsdk.service.capability.Lq
Parameters:

¢ JaunchSession

e listener — (optional) com.connectsdk.service.capability.Launcher.AppStateListener with methods to be
called on success or failure

void closeLaunchSession (LaunchSession launchSession, ResponseListener <Object> listener) Parameters:
¢ launchSession
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
boolean isConnectable ()
boolean isConnected ()
void connect ()
void disconnect ()
void onLoseReachability (DeviceServiceReachability reachability) Parameters:
e reachability
void sendCommand (final ServicecCommand<?> mCommand) Parameters:

¢ mCommand

Inherited Methods

void connect () Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceListener. If the connection attempt reveals that pairing is required, the DeviceServiceListener will
also be notified in that event.

void disconnect () Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceListener.

boolean isConnected () Whether the DeviceService is currently connected
boolean isConnectable ()

void cancelPairing () Explicitly cancels pairing in services that require pairing. In some services, this will hide a
prompt that is displaying on the device.

82 Chapter 5. Promote Your TV App

connectSDK

void sendPairingKey (String pairingKey) Will attempt to pair with the DeviceService with the provided pairing-
Data. The failure/success will be reported back to the DeviceServiceListener.

Parameters:

* pairingKey — Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

List<String> getCapabilities ()

boolean hasCapability (String capability) Test to see if the capabilities array contains a given capability. See the
individual Capability classes for acceptable capability values.

It is possible to append a wildcard search term . Any to the end of the search term. This method will return true
for capabilities that match the term up to the wildcard.

Example: Launcher.App.Any
Parameters:
e capability — Capability to test against

boolean hasAnyCapability (String... capabilities) Test to see if the capabilities array contains at least one capabil-
ity in a given set of capabilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
e capabilities — Set of capabilities to test against

boolean hasCapabilities (List<String> capabilities) Test to see if the capabilities array contains a given set of capa-
bilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
* capabilities — List of capabilities to test against
ServiceDescription getServiceDescription ()
ServiceConfig getServiceConfig ()
JSONObject toJSONObject ()
String getServiceName () Name of the DeviceService (webOS, Chromecast, etc)

void closeLaunchSession (LaunchSession launchSession, ResponseListener <Object> listener) Closes the ses-
sion on the first screen device. Depending on the sessionType, the associated service will have different ways of
handling the close functionality.

Parameters:
¢ launchSession — LaunchSession to close
* listener — (optional) listener to be called on success/failure
Launcher getLauncher ()
CapabilityPriorityLevel getLauncherCapabilityLevel ()
void launchAppWithInfo (AppInfo appInfo, AppLaunchListener listener) Launch an application on the device.
Related capabilities:
¢ Launcher.App

e Launcher.App.Params —if launching with params

5.10. API References 83

connectSDK

Parameters:

 applnfo — Applnfo object for the application

* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchApp (String appld, AppLaunchListener listener) Launch an application on the device.

Related capabilities:

¢ Launcher.App
Parameters:

e appld — ID of the application

* listener — (optional) AppLaunchListener with methods to be called on success or failure

void closeApp (LaunchSession launchSession, ResponseListener <Object> listener) Close an application on the
device.

Related capabilities:
* Launcher.App.Close
Parameters:
¢ launchSession — LaunchSession of the target app
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getAppList (AppListListener listener) Gets a list of all apps installed on the device.
Related capabilities:
e Launcher.App.List
Parameters:
* listener — (optional) AppListListener with methods to be called on success or failure
void getRunningApp (AppInfoListener listener) Gets an Applnfo object for the current running app on the device.
Related capabilities:
* Launcher.RunningApp
Parameters:
* listener — (optional) AppInfoListener with methods to be called on success or failure

ServiceSubscription <ApplInfoListener> subscribeRunningApp (AppInfoListener listener) Subscribes to changes
of the current running app. Every time the running app changes, the success block will be called with an
Applnfo object for the current running app.

Related capabilities:
* Launcher.RunningApp.Subscribe
Parameters:
* listener — (optional) ApplInfoListener with methods to be called on success or failure

void getAppState (LaunchSession launchSession, AppStateListener listener) Gets the target app’s running status
and on-screen visibility.

Related capabilities:

e Launcher.AppState

84 Chapter 5. Promote Your TV App

connectSDK

Parameters:
* JlaunchSession — LaunchSession of the target app
* listener — (optional) AppStateListener with methods to be called on success or failure

ServiceSubscription <AppStateListener> subscribeAppState (LaunchSession launchSession, AppStateListener listener)
Subscribes to changes of the state of the target app. Every time the app’s state changes, the success block will
be called with info on the app’s running status and on-screen visibility.

Related capabilities:
* Launcher.AppState.Subscribe
Parameters:
* JlaunchSession — LaunchSession of the target app
* listener — (optional) AppStateListener with methods to be called on success or failure

void launchBrowser (String url, AppLaunchListener listener) Launch the web browser. Will launch deep-linked to
provided URL, if supported on the target platform.

Related capabilities:
* Launcher.Browser
* Launcher.Browser.Params — if launching with url
Parameters:
e url
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchYouTube (String contentld, AppLaunchListener listener) Launch YouTube app. Will launch deep-
linked to provided contentld, if supported on the target platform.

Related capabilities:
¢ Launcher.YouTube
* Launcher.YouTube.Params —if launching with contentld
Parameters:
 contentld — Video id to open
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchNetflix (String contentld, AppLaunchListener listener) Launch Netflix app. Will launch deep-linked to
provided contentld, if supported on the target platform.

Related capabilities:
¢ Launcher.Netflix
* Launcher.Netflix.Params — if launching with contentld
Parameters:
* contentld — Video id to open
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchHulu (String contentld, AppLaunchListener listener) Launch Hulu app. Will launch deep-linked to
provided contentld, if supported on the target platform.

Related capabilities:

5.10. API References 85

connectSDK

¢ Launcher.Hulu
* Launcher.Hulu.Params —if launching with contentld
Parameters:
* contentld — Video id to open
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchAppStore (String appld, AppLaunchListener listener) Launch the device’s app store app, optionally
deep-linked to a specific app’s page.

Related capabilities:
e Launcher.AppStore
* Launcher.AppStore.Params
Parameters:
* appld — (optional) ID of the application to show in the app store
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void onLoseReachability (DeviceServiceReachability reachability) Parameters:
¢ reachability
void unsubscribe (URLServiceSubscription<?> subscription) Parameters:
* subscription
void sendCommand (ServicecCommand<?> command) Parameters:

e command

DLNAService

com.connectsdk.service.DLNAService
extends DeviceService

DLNAService is a rough control implementation for the UPnP AVTransport, MediaRenderer, and RenderingControl
services. DLNA commands & events occur over HTTP.

This service currently exists for the sole purpose of providing media control/playback functionality for the Net-
castTVService. DiscoveryManager is currently set up to ignore any DLNA devices that are not manufactured by
LG. It is not recommended to remove this restriction, as the DLNAService implementation is not complete.

To learn more about the protocols in use by DLNAService, check out the following documents.
e UPnP
e AVTransport Service
* MediaRenderer Device

* RenderingControl Service

86 Chapter 5. Promote Your TV App

http://upnp.org/
http://upnp.org/specs/av/UPnP-av-AVTransport-v1-Service.pdf
http://upnp.org/specs/av/UPnP-av-MediaRenderer-v1-Device.pdf
http://upnp.org/specs/av/UPnP-av-RenderingControl-v1-Service.pdf

connectSDK

Properties

final String ID = “DLNA” final String AV_TRANSPORT_URN = “urn:schemas-upnp-org:service:AVTransport:
17 final String CONNECTION_MANAGER_URN = “urn:schemas-upnp-org:service:ConnectionManager:1” fi-
nal String RENDERING_CONTROL_URN = “urn:schemas-upnp-org:service:RenderingControl:1” final String
PLAY_STATE = “playState” final String DEFAULT_SUBTITLE_MIMETYPE = “text/srt” final String DE-
FAULT_SUBTITLE_TYPE = “srt”

Inner Classes

¢ PositionInfoListener

Methods

DLNAService (ServiceDescription serviceDescription, ServiceConfig serviceConfig) Parameters:
* serviceDescription
* serviceConfig

DLNAService (ServiceDescription serviceDescription, ServiceConfig serviceConfig, Context context, DLNAHttpServer dinaServe
Parameters:

* serviceDescription
* serviceConfig
* context
¢ dInaServer
Capability PriorityLevel getPriorityLevel (Class<?extends CapabilityMethods > clazz) Parameters:
e clazz
void setServiceDescription (ServiceDescription serviceDescription) Parameters:
e serviceDescription
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (final MedialnfoListener listener) Parameters:
* listener — (optional) final MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener) Parameters:
¢ listener — (optional) MedialnfoListener with methods to be called on success or failure

void displayMedia (String url, String mimeType, String title, String description, String iconSrc, final LaunchListener listener)
Parameters:

e url

* mimeType
* title

e description

* iconSrc

5.10. API References 87

urn:schemas-upnp-org:service:AVTransport:1
urn:schemas-upnp-org:service:AVTransport:1
urn:schemas-upnp-org:service:ConnectionManager:1
urn:schemas-upnp-org:service:RenderingControl:1

connectSDK

* listener — (optional) final LaunchListener with methods to be called on success or failure

void displayImage (String url, String mimeType, String title, String description, String iconSrc, LaunchListener listener)
This method is deprecated. Use MediaPlayer::displayImage (MediaInfo mediaInfo,
LaunchListener listener) instead.

Parameters:
e url
* mimeType
* title
¢ description
* iconSrc
* listener — (optional) LaunchListener with methods to be called on success or failure
void displayImage (Medialnfo medialnfo, LaunchListener listener) Parameters:
¢ medialnfo
¢ listener — (optional) LaunchListener with methods to be called on success or failure

void playMedia (String url, String mimeType, String title, String description, String iconSrc, boolean shouldLoop, LaunchListene
This method is deprecated. Use MediaPlayer::playMedia (MediaInfo mediaInfo, boolean
shouldLoop, LaunchListener listener) instead.

Parameters:
e url
* mimeType
* title
* description
* iconSrc
¢ shouldLoop
¢ listener — (optional) LaunchListener with methods to be called on success or failure
void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener) Parameters:
* medialnfo
 shouldLoop
¢ listener — (optional) LaunchListener with methods to be called on success or failure
void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener) Parameters:
¢ launchSession
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
MediaControl getMediaControl () Get MediaControl implementation
Returns: MediaControl
CapabilityPriorityLevel getMediaControlCapabilityLevel () Get a capability priority for current implementation
Returns: CapabilityPriorityLevel

void play (ResponseListener <Object> listener) Parameters:

88 Chapter 5. Promote Your TV App

connectSDK

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
PlaylistControl getPlaylistControl ()
CapabilityPriorityLevel getPlaylistControlCapabilityLevel ()

void previous (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl: :previous (ResponselListener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void next (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl: :next (ResponselListener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void jumpToTrack (long index, ResponseListener <Object> listener) Play a track specified by index in the playlist
Parameters:
¢ index — index in the playlist, it starts from zero like index of array
* listener — optional response listener
void setPlayMode (PlayMode playMode, ResponseListener <Object> listener) Set order of playing tracks
Parameters:
* playMode
* listener — optional response listener
void seek (long position, ResponseListener <Object> listener) Parameters:
e position — The new position, in milliseconds from the beginning of the stream
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getDuration (final DurationListener listener) Parameters:
* listener — (optional) final DurationListener with methods to be called on success or failure
void getPosition (final PositionListener listener) Parameters:
* listener — (optional) final PositionListener with methods to be called on success or failure
void sendCommand (final ServiceCommand<?> mCommand) Parameters:
* mCommand

LaunchSession decodeLaunchSession (String type, JSONObject sessionObj) Parameters:

5.10. API References 89

connectSDK

* type
* sessionObj
void getPlayState (final PlayStateListener listener) Parameters:
* listener — (optional) final PlayStateListener with methods to be called on success or failure

ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener) Subscribe for playback
state changes

Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>

void unsubscribe (URLServiceSubscription<?> subscription) Parameters:

e subscription
boolean isConnectable ()
boolean isConnected ()
void connect ()
void disconnect ()
void onLoseReachability (DeviceServiceReachability reachability) Parameters:

* reachability
void subscribeServices ()
void resubscribeServices ()
void unsubscribeServices ()
VolumeControl getVolumeControl ()
CapabilityPriorityLevel getVolumeControlCapabilityLevel ()
void volumeUp (final ResponseListener <Object> listener) Parameters:

« listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void volumeDown (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void setVolume (float volume, ResponseListener <Object> listener) Parameters:

e volume

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getVolume (final VolumelListener listener) Parameters:

* listener — (optional) final VolumeListener with methods to be called on success or failure
void setMute (boolean isMute, ResponseListener <Object> listener) Parameters:

e isMute

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getMute (final MuteListener listener) Parameters:

¢ listener — (optional) final MuteListener with methods to be called on success or failure

90 Chapter 5. Promote Your TV App

connectSDK

ServiceSubscription <VolumeListener> subscribeVolume (VolumeListener listener) Parameters:
¢ listener — (optional) VolumeListener with methods to be called on success or failure
ServiceSubscription <MuteListener> subscribeMute (MuteListener listener) Parameters:
* listener — (optional) MuteListener with methods to be called on success or failure

static DiscoveryFilter discoveryFilter ()

Inherited Methods

void connect () Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceListener. If the connection attempt reveals that pairing is required, the DeviceServiceListener will
also be notified in that event.

void disconnect () Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceListener.

boolean isConnected () Whether the DeviceService is currently connected
boolean isConnectable ()

void cancelPairing () Explicitly cancels pairing in services that require pairing. In some services, this will hide a
prompt that is displaying on the device.

void sendPairingKey (String pairingKey) Will attempt to pair with the DeviceService with the provided pairing-
Data. The failure/success will be reported back to the DeviceServiceListener.

Parameters:

* pairingKey — Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

List<String> getCapabilities ()

boolean hasCapability (String capability) Test to see if the capabilities array contains a given capability. See the
individual Capability classes for acceptable capability values.

It is possible to append a wildcard search term . Any to the end of the search term. This method will return true
for capabilities that match the term up to the wildcard.

Example: Launcher.App.Any
Parameters:
e capability — Capability to test against

boolean hasAnyCapability (String... capabilities) Test to see if the capabilities array contains at least one capabil-
ity in a given set of capabilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
* capabilities — Set of capabilities to test against

boolean hasCapabilities (List<String> capabilities) Test to see if the capabilities array contains a given set of capa-
bilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:

e capabilities — List of capabilities to test against

5.10. API References 91

connectSDK

ServiceDescription getServiceDescription ()

ServiceConfig getServiceConfig ()

JSONObject toJSONODbject ()

String getServiceName () Name of the DeviceService (webOS, Chromecast, etc)

void closeLaunchSession (LaunchSession launchSession, ResponseListener <Object> listener) Closes the ses-
sion on the first screen device. Depending on the sessionType, the associated service will have different ways of
handling the close functionality.

Parameters:
¢ launchSession — LaunchSession to close
* listener — (optional) listener to be called on success/failure
PlaylistControl getPlaylistControl ()
CapabilityPriorityLevel getPlaylistControlCapabilityLevel ()
void previous (ResponseListener <Object> listener) Jump playlist to the previous track.
Play previous track in the playlist
Related capabilities:
e PlaylistControl.Previous
Parameters:
* listener — optional response listener
void next (ResponseListener <Object> listener) Jump playlist to the next track.
Play next track in the playlist
Related capabilities:
e PlaylistControl.Next
Parameters:
* listener — optional response listener
void jumpToTrack (long index, ResponseListener <Object> listener) Jump the playlist to the designated track.
Play a track specified by index in the playlist
Related capabilities:
e PlaylistControl.JumpToTrack
Parameters:
* index — index in the playlist, it starts from zero like index of array
* listener — optional response listener
void setPlayMode (PlayMode playMode, ResponseListener <Object> listener) Set order of playing tracks
Parameters:
* playMode
* listener — optional response listener
MediaControl getMediaControl () Get MediaControl implementation

Returns: MediaControl

92 Chapter 5. Promote Your TV App

connectSDK

Capability PriorityLevel getMediaControlCapabilityLevel () Get a capability priority for current implementation
Returns: CapabilityPriorityLevel
void play (ResponseListener <Object> listener) Send play command.
Related capabilities:
* MediaControl.Play
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener) Send pause command.
Related capabilities:
* MediaControl.Pause
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (ResponseListener <Object> listener) Send play command.
Related capabilities:
e MediaControl.Stop
Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener) Send rewind command.
Related capabilities:
¢ MediaControl.Rewind
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener) Send play command.
Related capabilities:
¢ MediaControl.FastForward
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void seek (long position, ResponseListener <Object> listener) Seeks to a new position within the current media
item

Related capabilities:
¢ MediaControl.Seek
Parameters:
e position — The new position, in milliseconds from the beginning of the stream
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getDuration (DurationListener listener) Get the current media duration in milliseconds

Parameters:

5.10. API References 93

connectSDK

* listener — (optional) DurationListener with methods to be called on success or failure
void getPosition (PositionListener listener) Get the current playback position in milliseconds
Parameters:
* listener — (optional) PositionListener with methods to be called on success or failure
void getPlayState (PlayStateListener listener) Get the current state of playback
Parameters:
* listener — (optional) PlayStateListener with methods to be called on success or failure

ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener) Subscribe for playback
state changes

Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (MedialnfoListener listener) Parameters:
¢ listener — (optional) MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener) Parameters:
¢ listener — (optional) MedialnfoListener with methods to be called on success or failure

void displayImage (Medialnfo medialnfo, LaunchListener listener) Display an image on the device. Not all de-
vices support all of the parameters — supply as many as you have available.

Related capabilities:
* MediaPlayer.Display.Image
e MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description
* MediaPlayer.MediaData.Thumbnail
e MediaPlayer.MediaData.MimeType
Parameters:
* medialnfo — Object of Medialnfo class which includes all the information about an image to display.
e listener — (optional) LaunchListener with methods to be called on success or failure

void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener) Play an audio or video file
on the device. Not all devices support all of the parameters — supply as many as you have available.

Related capabilities:
* MediaPlayer.Play.Video
e MediaPlayer.Play.Audio
e MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description

e MediaPlayer.MediaData.Thumbnail

94 Chapter 5. Promote Your TV App

connectSDK

e MediaPlayer.MediaData.MimeType
Parameters:
» medialnfo — Object of Medialnfo class which includes all the information about an image to display.
¢ shouldLoop — Whether to automatically loop playback
¢ listener — (optional) LaunchListener with methods to be called on success or failure

void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener) Close a running media ses-
sion. Because media is handled differently on different platforms, it is required to keep track of LaunchSession
and MediaControl objects to control that media session in the future. LaunchSession will be required to close
the media and mediaControl will be required to control the media.

Related capabilities:
* MediaPlayer.Close
Parameters:
¢ launchSession — LaunchSession object for use in closing media instance
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
VolumeControl getVolumeControl ()
CapabilityPriorityLevel getVolumeControlCapabilityLevel ()
void volumeUp (ResponseListener <Object> listener) Sends the volume up command to the device.
Related capabilities:
* VolumeControl.UpDown
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void volumeDown (ResponseListener <Object> listener) Sends the volume down command to the device.
Related capabilities:
¢ VolumeControl.UpDown
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void setVolume (float volume, ResponseListener <Object> listener) Set the volume of the device.
Related capabilities:
¢ VolumeControl. Set
Parameters:
* volume — Volume as a float between 0.0 and 1.0
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getVolume (VolumelListener listener) Get the current volume of the device.
Related capabilities:
* VolumeControl.Get
Parameters:

* listener — (optional) VolumeListener with methods to be called on success or failure

5.10. API References 95

connectSDK

void setMute (boolean isMute, ResponseListener <Object> listener) Set the current volume.
Related capabilities:
¢ VolumeControl.Mute.Set
Parameters:
e isMute
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getMute (MuteListener listener) Get the current mute state.
Related capabilities:
* VolumeControl.Mute.Get
Parameters:
* listener — (optional) MuteListener with methods to be called on success or failure

ServiceSubscription <VolumeListener> subscribeVolume (VolumeListener listener) Subscribe to the volume on the
TV.

Related capabilities:
* VolumeControl.Subscribe
Parameters:
* listener — (optional) VolumeListener with methods to be called on success or failure
ServiceSubscription <MuteListener> subscribeMute (MuteListener listener) Subscribe to the mute state on the TV.
Related capabilities:
* VolumeControl.Mute.Subscribe
Parameters:
* listener — (optional) MuteListener with methods to be called on success or failure
void onLoseReachability (DeviceServiceReachability reachability) Parameters:
* reachability
void unsubscribe (URLServiceSubscription<?> subscription) Parameters:
* subscription
void sendCommand (ServicecCommand<?> command) Parameters:

e command

DeviceService

com.connectsdk.service.DeviceService

Overview

From a high-level perspective, DeviceService completely abstracts the functionality of a particular service/protocol
(webOS TV, Netcast TV, Chromecast, Roku, DIAL, etc).

96 Chapter 5. Promote Your TV App

connectSDK

In Depth

DeviceService is an abstract class that is meant to be extended. You shouldn’t ever use DeviceService directly, unless
extending it to provide support for an additional service/protocol.

Immediately after discovery of a DeviceService, DiscoveryManager will set the DeviceService’s Listener to the Con-
nectableDevice that owns the DeviceService. You should not change the Listener unless you intend to manage the
lifecycle of that service. The DeviceService will proxy all of its Listener method calls through the ConnectableDe-
vice’s ConnectableDeviceListener.

Connection & Pairing

Your ConnectableDevice object will let you know if you need to connect or pair to any services.

Capabilities

All DeviceService objects have a group of capabilities. These capabilities can be implemented by any object, and that
object will be returned when you call the DeviceService’s capability methods (launcher, mediaPlayer, volumeControl,
etc).

Inner Classes

e DeviceServiceListener

e PairingType

Methods

void connect () Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceListener. If the connection attempt reveals that pairing is required, the DeviceServiceListener will
also be notified in that event.

void disconnect () Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceListener.

boolean isConnected () Whether the DeviceService is currently connected
boolean isConnectable ()

void cancelPairing () Explicitly cancels pairing in services that require pairing. In some services, this will hide a
prompt that is displaying on the device.

void sendPairingKey (String pairingKey) Will attempt to pair with the DeviceService with the provided pairing-
Data. The failure/success will be reported back to the DeviceServiceListener.

Parameters:

* pairingKey — Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

List<String> getCapabilities ()

boolean hasCapability (String capability) Test to see if the capabilities array contains a given capability. See the
individual Capability classes for acceptable capability values.

5.10. API References 97

connectSDK

It is possible to append a wildcard search term . Any to the end of the search term. This method will return true
for capabilities that match the term up to the wildcard.

Example: Launcher.App.Any
Parameters:
* capability — Capability to test against

boolean hasAnyCapability (String... capabilities) Test to see if the capabilities array contains at least one capabil-
ity in a given set of capabilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
e capabilities — Set of capabilities to test against

boolean hasCapabilities (List<String> capabilities) Test to see if the capabilities array contains a given set of capa-
bilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
* capabilities — List of capabilities to test against

boolean hasCapabilities (String. .. capabilities) Test to see if the capabilities array contains a given set of capabili-
ties. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
* capabilities — Set of capabilities to test against
ServiceDescription getServiceDescription ()
ServiceConfig getServiceConfig ()
JSONODbject toJSONODbject ()
String getServiceName () Name of the DeviceService (webOS, Chromecast, etc)

void closeLaunchSession (LaunchSession launchSession, ResponseListener <Object> listener) Closes the ses-
sion on the first screen device. Depending on the sessionType, the associated service will have different ways of
handling the close functionality.

Parameters:
¢ JlaunchSession — LaunchSession to close

* listener — (optional) listener to be called on success/failure

Inherited Methods

void onLoseReachability (DeviceServiceReachability reachability) Parameters:
e reachability

void unsubscribe (URLServiceSubscription<?> subscription) Parameters:
* subscription

void sendCommand (ServicecCommand<?> command) Parameters:

e command

98 Chapter 5. Promote Your TV App

connectSDK

DeviceServiceListener

com.connectsdk.service.DeviceService.DeviceServicelListener

Methods

void onConnectionRequired (DeviceService service) If the DeviceService requires an active connection (web-
socket, pairing, etc) this method will be called.

Parameters:
* service — DeviceService that requires connection

void onConnectionSuccess (DeviceService service) After the connection has been successfully established, and after
pairing (if applicable), this method will be called.

Parameters:
 service — DeviceService that was successfully connected

void onCapabilitiesUpdated (DeviceService service, List<String> added, List<String> removed) There are situa-
tions in which a DeviceService will update the capabilities it supports and propagate these changes to the De-
viceService. Such situations include:

* on discovery, DIALService will reach out to detect if certain apps are installed
* on discovery, certain DeviceServices need to reach out for version & region information

For more information on this particular method, see ConnectableDeviceDelegate’s connectableDe-
vice:capabilitiesAdded:removed: method.

Parameters:
* service — DeviceService that has experienced a change in capabilities
 added — List<String> of capabilities that are new to the DeviceService
» removed — List<String> of capabilities that the DeviceService has lost

void onDisconnect (DeviceService service, Error error) This method will be called on any disconnection. If error is
nil, then the connection was clean and likely triggered by the responsible DiscoveryProvider or by the user.

Parameters:
¢ service — DeviceService that disconnected

« error — Error with a description of any errors causing the disconnect. If this value is nil, then the disconnect
was clean/expected.

void onConnectionFailure (DeviceService service, Error error) Will be called if the DeviceService fails to establish
a connection.

Parameters:
¢ service — DeviceService which has failed to connect
* error — Error with a description of the failure

void onPairingRequired (DeviceService service, PairingType pairingType, Object pairingData) 1f the DeviceSer-
vice requires pairing, valuable data will be passed to the delegate via this method.

Parameters:

* service — DeviceService that requires pairing

5.10. API References 99

connectSDK

¢ pairingType — PairingType that the DeviceService requires
e pairingData — Any data that might be required for the pairing process, will usually be nil
void onPairingSuccess (DeviceService service) Parameters:
* service
void onPairingFailed (DeviceService service, Error error) If there is any error in pairing, this method will be called.
Parameters:
* service — DeviceService that has failed to complete pairing

e error — Error with a description of the failure

FireTVService

com.connectsdk.service.FireTVService
extends DeviceService

FireTVService provides capabilities for FireTV devices. FireTVService acts as a layer on top of Fling SDK, and
requires the Fling SDK library to function. FireTVService provides the following functionality:

¢ Media playback
¢ Media control

Using Connect SDK for discovery/control of FireTV devices will result in your app complying with the Fling SDK
terms of service.

Properties

final String ID = “FireTV”

Inner Classes

* ConvertResult
* PlayStateSubscription

* Subscription

Methods

FireTVService (ServiceDescription serviceDescription, ServiceConfig serviceConfig) Parameters:
* serviceDescription
* serviceConfig

void connect () Prepare a service for usage

boolean isConnected () Check if service is ready

boolean isConnectable () Check if service implements connect/disconnect methods

void disconnect () Disconnect a service and close all subscriptions

100 Chapter 5. Promote Your TV App

connectSDK

Capability PriorityLevel getPriorityLevel (Class<?extends CapabilityMethods > clazz) Get a priority level for a
particular capability

Parameters:
e clazz
MediaPlayer getMediaPlayer () Get MediaPlayer implementation
Capability Priority Level getMediaPlayerCapabilityLevel () Get MediaPlayer priority level

void getMedialnfo (final MedialnfoListener listener) Get Medialnfo available only during playback otherwise re-
turns an error

Parameters:
* listener — (optional) final MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener) Not supported
Parameters:
¢ listener — (optional) MedialnfoListener with methods to be called on success or failure

void displayImage (String url, String mimeType, String title, String description, String iconSrc, final LaunchListener listener)
Display an image with metadata

Parameters:
e url — media source
* mimeType
e title
¢ description
* iconSrc
* listener — (optional) final LaunchListener with methods to be called on success or failure

void playMedia (String url, String mimeType, String title, String description, String iconSrc, boolean shouldLoop, LaunchListene
Play audio/video

Parameters:
¢ url — media source
* mimeType
e title
* description
* iconSrc
* shouldLoop — skipped in current implementation
¢ listener — (optional) LaunchListener with methods to be called on success or failure

void closeMedia (LaunchSession launchSession, final ResponseListener <Object> listener) Stop and close media
player on FireTV. In current implementation it’s similar to stop method

Parameters:
¢ JaunchSession

« listener — (optional) final ResponseListener< Object > with methods to be called on success or failure

5.10. API References 101

connectSDK

void displayImage (Medialnfo medialnfo, LaunchListener listener) Display an image with metadata
Parameters:
* medialnfo
* listener — (optional) LaunchListener with methods to be called on success or failure
void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener) Play audio/video
Parameters:
* medialnfo
* shouldLoop — skipped in current implementation
¢ listener — (optional) LaunchListener with methods to be called on success or failure
MediaControl getMediaControl () Get MediaControl capability. It should be used only during media playback.
CapabilityPriorityLevel getMediaControlCapabilityLevel () Get MediaControl priority level
void play (ResponseListener <Object> listener) Play current media.
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener) Pause current media.
Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (ResponseListener <Object> listener) Stop current media and close FireTV application.
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener) Not supported
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener) Not supported
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void previous (ResponseListener <Object> listener) Not supported
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void next (ResponseListener <Object> listener) Not supported
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void seek (long position, ResponseListener <Object> listener) Seek current media.
Parameters:
* position — time in milliseconds

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

102 Chapter 5. Promote Your TV App

connectSDK

void getDuration (final DurationListener listener) Get current media duration.
Parameters:
* listener — (optional) final DurationListener with methods to be called on success or failure
void getPosition (final PositionListener listener) Get playback position
Parameters:
¢ listener — (optional) final PositionListener with methods to be called on success or failure
void getPlayState (final PlayStateListener listener) Get playback state
Parameters:
* listener — (optional) final PlayStateListener with methods to be called on success or failure

ServiceSubscription <PlayStateListener> subscribePlayState (final PlayStateListener listener) Subscribe to play-
back state. Only single instance of subscription is available. Each new call returns the same subscription
object.

Parameters:
« listener — (optional) final PlayStateListener with methods to be called on success or failure

static DiscoveryFilter discoveryFilter () Get filter instance for this service which contains a name of service and id.
It is used in discovery process

Inherited Methods

void connect () Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceListener. If the connection attempt reveals that pairing is required, the DeviceServiceListener will
also be notified in that event.

void disconnect () Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceListener.

boolean isConnected () Whether the DeviceService is currently connected
boolean isConnectable ()

void cancelPairing () Explicitly cancels pairing in services that require pairing. In some services, this will hide a
prompt that is displaying on the device.

void sendPairingKey (String pairingKey) Will attempt to pair with the DeviceService with the provided pairing-
Data. The failure/success will be reported back to the DeviceServiceListener.

Parameters:

* pairingKey — Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

List<String> getCapabilities ()

boolean hasCapability (String capability) Test to see if the capabilities array contains a given capability. See the
individual Capability classes for acceptable capability values.

It is possible to append a wildcard search term . Any to the end of the search term. This method will return true
for capabilities that match the term up to the wildcard.

Example: Launcher.App.Any

Parameters:

5.10. API References 103

connectSDK

e capability — Capability to test against

boolean hasAnyCapability (String... capabilities) Test to see if the capabilities array contains at least one capabil-
ity in a given set of capabilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
e capabilities — Set of capabilities to test against

boolean hasCapabilities (List<String> capabilities) Test to see if the capabilities array contains a given set of capa-
bilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
* capabilities — List of capabilities to test against
ServiceDescription getServiceDescription ()
ServiceConfig getServiceConfig ()
JSONObject toJSONObject ()
String getServiceName () Name of the DeviceService (webOS, Chromecast, etc)

void closeLaunchSession (LaunchSession launchSession, ResponseListener <Object> listener) Closes the ses-
sion on the first screen device. Depending on the sessionType, the associated service will have different ways of
handling the close functionality.

Parameters:
¢ launchSession — LaunchSession to close
* listener — (optional) listener to be called on success/failure
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (MedialnfoListener listener) Parameters:
¢ listener — (optional) MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener) Parameters:
* listener — (optional) MedialnfoListener with methods to be called on success or failure

void displayImage (Medialnfo medialnfo, LaunchListener listener) Display an image on the device. Not all de-
vices support all of the parameters — supply as many as you have available.

Related capabilities:
e MediaPlayer.Display.Image
* MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description
* MediaPlayer.MediaData.Thumbnail
e MediaPlayer.MediaData.MimeType
Parameters:
* medialnfo — Object of Medialnfo class which includes all the information about an image to display.

* listener — (optional) LaunchListener with methods to be called on success or failure

104 Chapter 5. Promote Your TV App

connectSDK

void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener) Play an audio or video file
on the device. Not all devices support all of the parameters — supply as many as you have available.

Related capabilities:
* MediaPlayer.Play.Video
* MediaPlayer.Play.Audio
* MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description
e MediaPlayer.MediaData.Thumbnail
e MediaPlayer.MediaData.MimeType
Parameters:
* medialnfo — Object of Medialnfo class which includes all the information about an image to display.
¢ shouldLoop — Whether to automatically loop playback
¢ listener — (optional) LaunchListener with methods to be called on success or failure

void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener) Close a running media ses-
sion. Because media is handled differently on different platforms, it is required to keep track of LaunchSession
and MediaControl objects to control that media session in the future. LaunchSession will be required to close
the media and mediaControl will be required to control the media.

Related capabilities:
* MediaPlayer.Close
Parameters:
* launchSession — LaunchSession object for use in closing media instance
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
MediaControl getMediaControl () Get MediaControl implementation
Returns: MediaControl
Capability PriorityLevel getMediaControlCapabilityLevel () Get a capability priority for current implementation
Returns: CapabilityPriorityLevel
void play (ResponseListener <Object> listener) Send play command.
Related capabilities:
* MediaControl.Play
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener) Send pause command.
Related capabilities:
¢ MediaControl.Pause
Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

5.10. API References 105

connectSDK

void stop (ResponseListener <Object> listener) Send play command.
Related capabilities:
* MediaControl.Stop
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener) Send rewind command.
Related capabilities:
* MediaControl.Rewind
Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener) Send play command.
Related capabilities:
¢ MediaControl.FastForward
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void previous (ResponseListener <Object> listener) This method is deprecated.
PlaylistControl::previous (Responselistener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void next (ResponseListener <Object> listener) This method is deprecated.
PlaylistControl: :next (ResponselListener<Object> listener) instead.

Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

Use

Use

void seek (long position, ResponseListener <Object> listener) Seeks to a new position within the current media

item
Related capabilities:
* MediaControl.Seek
Parameters:
e position — The new position, in milliseconds from the beginning of the stream
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getDuration (DurationListener listener) Get the current media duration in milliseconds
Parameters:
e listener — (optional) DurationListener with methods to be called on success or failure
void getPosition (PositionListener listener) Get the current playback position in milliseconds
Parameters:

* listener — (optional) PositionListener with methods to be called on success or failure

106 Chapter 5. Promote Your TV App

connectSDK

void getPlayState (PlayStateListener listener) Get the current state of playback
Parameters:
* listener — (optional) PlayStateListener with methods to be called on success or failure

ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener) Subscribe for playback
state changes

Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>
void onLoseReachability (DeviceServiceReachability reachability) Parameters:
* reachability
void unsubscribe (URLServiceSubscription<?> subscription) Parameters:
* subscription
void sendCommand (ServicecCommand<?> command) Parameters:

e command

NetcastTVService

com.connectsdk.service.NetcastTVService
extends DeviceService <and-deviceservice>

NetcastTVService provides capabilities for LG Smart TVs running Netcast versions 3.x and 4.x (model years 2012-
2014). The media playback functionality of NetcastTVService may be proxied through to DLNAService to avoid
requiring pairing. Commands & subscriptions on Netcast occur over HTTP.

The following capabilities are provided by the Netcast OS:
¢ Media playback
* Media control
* App launching*
* Volume control*
 Text input control*
» Key control (fiveway)*
* Mouse control*
* Power control*
* TV control (change channels, get channel info)*
 External input control*
* =requires pairing

To learn more about Netcast’s second screen protocol, visit the UDAP protocol specification.

5.10. API References 107

http://developer.lgappstv.com/TV_HELP/index.jsp?topic=%2Flge.tvsdk.references.book%2Fhtml%2FUDAP%2FUDAP%2FLG+UDAP+2+0+Protocol+Specifications.htm

connectSDK

Properties

final String ID = “Netcast TV”

final String UDAP_PATH_PAIRING = “/udap/api/pairing”

final String UDAP_PATH_DATA = “/udap/api/data”

final String UDAP_PATH_COMMAND = “/udap/api/command”

final String UDAP_PATH_EVENT = “/udap/api/event”

final String UDAP_PATH_APPTOAPP_DATA = “/udap/api/apptoapp/data/”
final String UDAP_PATH_APPTOAPP_COMMAND = “/udap/api/apptoapp/command/”
final String ROAP_PATH_APP_STORE = “/roap/api/command/”

final String UDAP_API_PAIRING = “pairing”

final String UDAP_API_COMMAND = “command”

final String UDAP_API_EVENT = “event”

final String TARGET_CHANNEL_LIST = “channel_list”

final String TARGET_CURRENT_CHANNEL = “cur_channel”

final String TARGET_VOLUME_INFO = “volume_info”

final String TARGET_APPLIST_GET = “applist_get”

final String TARGET_APPNUM_GET = “appnum_get”

final String TARGET_3D_MODE = “3DMode”

final String TARGET _IS_3D = “is_3D”

final String SMART_SHARE = “SmartShare?”

Inner Classes

¢ NetcastTVLaunchSessionR

e State

Methods

NetcastTVService (ServiceDescription serviceDescription, ServiceConfig serviceConfig) Parameters:
* serviceDescription
 serviceConfig

Capability PriorityLevel getPriorityLevel (Class<?extends CapabilityMethods > clazz) Parameters:
e clazz

void setServiceDescription (ServiceDescription serviceDescription) Parameters:

* serviceDescription

108 Chapter 5. Promote Your TV App

connectSDK

void connect ()
void disconnect ()
boolean isConnectable ()
boolean isConnected ()
void onLoseReachability (DeviceServiceReachability reachability) Parameters:
* reachability
void hostByeBye ()
void showPairingKeyOnTYV ()
void cancelPairing ()
void removePairingKeyOnTYV ()
void sendPairingKey (final String pairingKey) Parameters:
¢ pairingKey
Launcher getLauncher ()
CapabilityPriorityLevel getLauncherCapabilityLevel ()
void getApplication (final String appName, final AppInfoListener listener) Parameters:
e appName
* listener — (optional) final AppInfoListener with methods to be called on success or failure
void launchApp (final String appld, final AppLaunchListener listener) Parameters:
* appld
* listener — (optional) final AppLaunchListener with methods to be called on success or failure
void launchAppWithInfo (AppInfo appInfo, Launcher . AppLaunchListener listener) Parameters:
* applnfo
* listener — (optional) Launcher.AppLaunchListener with methods to be called on success or failure

void launchAppWithInfo (AppInfo appInfo, Object params, Launcher.AppLaunchListener listener)
Parameters:

* applnfo

e params

* listener — (optional) Launcher.AppLaunchListener with methods to be called on success or failure
void launchBrowser (String url, final Launcher.AppLaunchListener listener) Parameters:

e url

* listener — (optional) final Launcher.AppLaunchListener with methods to be called on success or failure
void launchYouTube (String contentld, Launcher.AppLaunchListener listener) Parameters:

* contentld

* listener — (optional) Launcher.AppLaunchListener with methods to be called on success or failure
void launchYouTube (final String contentld, float startTime, final AppLaunchListener listener) Parameters:

¢ contentld

5.10. API References 109

connectSDK

e startTime

¢ listener — (optional) final AppLaunchListener with methods to be called on success or failure
void launchHulu (final String contentld, final Launcher.AppLaunchListener listener) Parameters:

* contentld

¢ listener — (optional) final Launcher.AppLaunchListener with methods to be called on success or failure
void launchNetflix (final String contentld, final Launcher.AppLaunchListener listener) Parameters:

* contentld

* listener — (optional) final Launcher.AppLaunchListener with methods to be called on success or failure
void launchAppStore (final String appld, final AppLaunchListener listener) Parameters:

* appld

* listener — (optional) final AppLaunchListener with methods to be called on success or failure
void closeApp (LaunchSession launchSession, ResponseListener <Object> listener) Parameters:

* launchSession

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getAppList (final AppListListener listener) Parameters:

¢ listener — (optional) final AppListListener with methods to be called on success or failure
void getRunningApp (AppInfoListener listener) Parameters:

* listener — (optional) AppInfoListener with methods to be called on success or failure
ServiceSubscription <ApplInfoListener> subscribeRunningApp (AppInfoListener listener) Parameters:

¢ listener — (optional) AppInfoListener with methods to be called on success or failure
void getAppState (final LaunchSession launchSession, final AppStateListener listener) Parameters:

¢ launchSession

* listener — (optional) final AppStateListener with methods to be called on success or failure

ServiceSubscription <AppStateListener> subscribeAppState (LaunchSession launchSession, AppStateListener listener)
Parameters:

¢ launchSession

* listener — (optional) AppStateListener with methods to be called on success or failure
TVControl getTVControl ()
CapabilityPriorityLevel getTVControlCapabilityLevel ()
void getChannelList (final ChannelListListener listener) Parameters:

¢ listener — (optional) final ChannelListListener with methods to be called on success or failure
void channelUp (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void channelDown (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void setChannel (final Channellnfo channellnfo, final ResponseListener <Object> listener) Parameters:

110 Chapter 5. Promote Your TV App

connectSDK

e channellnfo

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void getCurrentChannel (final ChannelListener listener) Parameters:

* listener — (optional) final ChannelListener with methods to be called on success or failure

ServiceSubscription <ChannelListener> subscribeCurrentChannel (final ChannelListener listener)
Parameters:

* listener — (optional) final ChannelListener with methods to be called on success or failure
void getProgramlInfo (ProgramiInfoListener listener) Parameters:
* listener — (optional) ProgramInfoListener with methods to be called on success or failure

ServiceSubscription <ProgramlInfoListener> subscribeProgramlInfo (ProgramlInfoListener listener)
Parameters:

* listener — (optional) ProgramInfoListener with methods to be called on success or failure
void getProgramList (ProgramlListListener listener) Parameters:

* listener — (optional) ProgramListListener with methods to be called on success or failure
ServiceSubscription <ProgramlListListener> subscribeProgramList (ProgramListListener listener) Parameters:

* listener — (optional) ProgramListListener with methods to be called on success or failure
void set3DEnabled (final boolean enabled, final ResponseListener <Object> listener) Parameters:

* enabled

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void get3DEnabled (final State3DModeListener listener) Parameters:

* listener — (optional) final State3DModeListener with methods to be called on success or failure

ServiceSubscription <State3DModeListener> subscribe3DEnabled (final State3DModeListener listener)
Parameters:

* listener — (optional) final State3DModeListener with methods to be called on success or failure
VolumeControl getVolumeControl ()
CapabilityPriorityLevel getVolumeControlCapabilityLevel ()
void volumeUp (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void volumeDown (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void setVolume (float volume, ResponseListener <Object> listener) Parameters:

e volume

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getVolume (final VolumelListener listener) Parameters:

* listener — (optional) final VolumeListener with methods to be called on success or failure
void setMute (final boolean isMute, final ResponseListener <Object> listener) Parameters:

¢ isMute

5.10. API References 111

connectSDK

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void getMute (final MuteListener listener) Parameters:

* listener — (optional) final MuteListener with methods to be called on success or failure
ServiceSubscription <VolumelListener> subscribeVolume (VolumeListener listener) Parameters:

¢ listener — (optional) VolumeListener with methods to be called on success or failure
ServiceSubscription <MuteListener> subscribeMute (MuteListener listener) Parameters:

* listener — (optional) MuteListener with methods to be called on success or failure
ExternallnputControl getExternallnput ()
CapabilityPriorityLevel getExternalInputControlPriorityLevel ()
void launchInputPicker (final AppLaunchListener listener) Parameters:

* listener — (optional) final AppLaunchListener with methods to be called on success or failure
void closeInputPicker (LaunchSession launchSession, ResponseListener <Object> listener) Parameters:

* launchSession

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getExternallnputList (ExternallnputListListener listener) Parameters:

¢ listener — (optional) ExternallnputListListener with methods to be called on success or failure
void setExternallnput (Externallnputlnfo input, ResponseListener <Object> listener) Parameters:

e input

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (final MedialnfoListener listener) Parameters:

* listener — (optional) final MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener) Parameters:

* listener — (optional) MedialnfoListener with methods to be called on success or failure

void displayImage (final String url, final String mimeType, final String title, final String description, final String iconSrc, final Me
Parameters:

e url

* mimeType

* title

e description

e iconSrc

* listener — (optional) final MediaPlayer.LaunchListener with methods to be called on success or failure
void displayImage (Medialnfo medialnfo, LaunchListener listener) Parameters:

* medialnfo

e listener — (optional) LaunchListener with methods to be called on success or failure

112 Chapter 5. Promote Your TV App

connectSDK

void playMedia (String url, String mimeType, String title, String description, String iconSrc, boolean shouldLoop, MediaPlayer.L
Parameters:

e url

* mimeType

* title

¢ description

* iconSrc

¢ shouldLoop

* listener — (optional) MediaPlayer.LaunchListener with methods to be called on success or failure

void playMedia (Medialnfo medialnfo, boolean shouldLoop, final MediaPlayer.LaunchListener listener)
Parameters:

* medialnfo

¢ shouldLoop

» listener — (optional) final MediaPlayer.LaunchListener with methods to be called on success or failure
void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener) Parameters:

¢ launchSession

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
MediaControl getMediaControl () Get MediaControl implementation

Returns: MediaControl
CapabilityPriorityLevel getMediaControlCapabilityLevel () Get a capability priority for current implementation
Returns: CapabilityPriorityLevel

void play (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener) Parameters:

« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void previous (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl::previous (ResponselListener<Object> listener) instead.

Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

5.10. API References 113

connectSDK

void next (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl: :next (ResponselListener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void seek (long position, ResponseListener <Object> listener) Parameters:
* position — The new position, in milliseconds from the beginning of the stream
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getDuration (DurationListener listener) Get the current media duration in milliseconds
Parameters:
* listener — (optional) DurationListener with methods to be called on success or failure
void getPosition (PositionListener listener) Get the current playback position in milliseconds
Parameters:
* listener — (optional) PositionListener with methods to be called on success or failure
void getPlayState (PlayStateListener listener) Get the current state of playback
Parameters:
* listener — (optional) PlayStateListener with methods to be called on success or failure

ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener) Subscribe for playback
state changes

Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>
MouseControl getMouseControl ()
CapabilityPriorityLevel getMouseControlCapabilityLevel ()
void connectMouse ()
void disconnectMouse ()
void click ()
void move (double dx, double dy) Parameters:
e dx
o dy
void move (PointF diff) Parameters:
o diff
void scroll (double dx, double dy) Parameters:
e dx
. dy
void scroll (PointF diff) Parameters:
o diff

114 Chapter 5. Promote Your TV App

connectSDK

TextInputControl getTextInputControl ()
CapabilityPriorityLevel getTextInputControlCapabilityLevel ()

ServiceSubscription <TextInputStatusListener> subscribeTextInputStatus (final TextInputStatusListener listener)
Parameters:

* listener — (optional) final TextInputStatusListener with methods to be called on success or failure
void sendText (final String input) Parameters:

* input
void sendEnter ()
void sendDelete ()
KeyControl getKeyControl ()
CapabilityPriorityLevel getKeyControlCapabilityLevel ()
void up (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void down (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void left (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void right (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void ok (final ResponseListener <Object> listener) Parameters:

« listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void back (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void home (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
PowerControl getPowerControl ()
CapabilityPriorityLevel getPowerControlCapabilityLevel ()
void powerOff (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void powerOn (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
String getHttpMessageForHandleKeyInput (final int keycode) Parameters:

* keycode
void sendKeyCode (KeyCode keycode, ResponseListener <Object> listener) Parameters:

* keycode

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

5.10. API References 115

connectSDK

String decToHex (String dec) Parameters:
¢ dec

String decToHex (long dec) Parameters:
e dec

void sendCommand (final ServicecCommand<?> mCommand) Parameters:
* mCommand

void unsubscribe (URLServiceSubscription<?> subscription) Parameters:
e subscription

DLNAService getDLNAService ()

DIALService getDIALService ()

static DiscoveryFilter discoveryFilter ()

Inherited Methods

void connect () Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceListener. If the connection attempt reveals that pairing is required, the DeviceServiceListener will
also be notified in that event.

void disconnect () Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceListener.

boolean isConnected () Whether the DeviceService is currently connected
boolean isConnectable ()

void cancelPairing () Explicitly cancels pairing in services that require pairing. In some services, this will hide a
prompt that is displaying on the device.

void sendPairingKey (String pairingKey) Will attempt to pair with the DeviceService with the provided pairing-
Data. The failure/success will be reported back to the DeviceServiceListener.

Parameters:

* pairingKey — Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

List<String> getCapabilities ()

boolean hasCapability (String capability) Test to see if the capabilities array contains a given capability. See the
individual Capability classes for acceptable capability values.

It is possible to append a wildcard search term . Any to the end of the search term. This method will return true
for capabilities that match the term up to the wildcard.

Example: Launcher.App.Any
Parameters:
e capability — Capability to test against

boolean hasAnyCapability (String... capabilities) Test to see if the capabilities array contains at least one capabil-
ity in a given set of capabilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.

Parameters:

116 Chapter 5. Promote Your TV App

connectSDK

* capabilities — Set of capabilities to test against

boolean hasCapabilities (List<String> capabilities) Test to see if the capabilities array contains a given set of capa-
bilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
e capabilities — List of capabilities to test against
ServiceDescription getServiceDescription ()
ServiceConfig getServiceConfig ()
JSONObject toJSONObject ()
String getServiceName () Name of the DeviceService (webOS, Chromecast, etc)

void closeLaunchSession (LaunchSession launchSession, ResponseListener <Object> listener) Closes the ses-
sion on the first screen device. Depending on the sessionType, the associated service will have different ways of
handling the close functionality.

Parameters:
* JaunchSession — LaunchSession to close
* listener — (optional) listener to be called on success/failure
Launcher getLauncher ()
CapabilityPriorityLevel getLauncherCapabilityLevel ()
void launchAppWithInfo (AppInfo appInfo, AppLaunchListener listener) Launch an application on the device.
Related capabilities:
e Launcher.App
* Launcher.App.Params —if launching with params
Parameters:
 applnfo — Applnfo object for the application
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchApp (String appld, AppLaunchListener listener) Launch an application on the device.
Related capabilities:
¢ Launcher.App
Parameters:
¢ appld — ID of the application
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void closeApp (LaunchSession launchSession, ResponseListener <Object> listener) Close an application on the
device.

Related capabilities:
e Launcher.App.Close
Parameters:

¢ launchSession — LaunchSession of the target app

5.10. API References 117

connectSDK

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getAppList (AppListListener listener) Gets a list of all apps installed on the device.
Related capabilities:
e Launcher.App.List
Parameters:
* listener — (optional) AppListListener with methods to be called on success or failure
void getRunningApp (AppInfoListener listener) Gets an Applnfo object for the current running app on the device.
Related capabilities:
* Launcher.RunningApp
Parameters:
* listener — (optional) AppInfoListener with methods to be called on success or failure

ServiceSubscription <ApplInfoListener> subscribeRunningApp (AppInfoListener listener) Subscribes to changes
of the current running app. Every time the running app changes, the success block will be called with an
Applnfo object for the current running app.

Related capabilities:
e Launcher.RunningApp.Subscribe
Parameters:
* listener — (optional) AppInfoListener with methods to be called on success or failure

void getAppState (LaunchSession launchSession, AppStateListener listener) Gets the target app’s running status
and on-screen visibility.

Related capabilities:
* Launcher.AppState
Parameters:
 JaunchSession — LaunchSession of the target app
* listener — (optional) AppStateListener with methods to be called on success or failure

ServiceSubscription <AppStateListener> subscribeAppState (LaunchSession launchSession, AppStateListener listener)
Subscribes to changes of the state of the target app. Every time the app’s state changes, the success block will
be called with info on the app’s running status and on-screen visibility.

Related capabilities:
* Launcher.AppState.Subscribe
Parameters:
* JlaunchSession — LaunchSession of the target app
* listener — (optional) AppStateListener with methods to be called on success or failure

void launchBrowser (String url, AppLaunchListener listener) Launch the web browser. Will launch deep-linked to
provided URL, if supported on the target platform.

Related capabilities:
¢ Launcher.Browser

* Launcher.Browser.Params — if launching with url

118 Chapter 5. Promote Your TV App

connectSDK

Parameters:
e url
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchYouTube (String contentld, AppLaunchListener listener) Launch YouTube app. Will launch deep-
linked to provided contentld, if supported on the target platform.

Related capabilities:
¢ Launcher.YouTube
e Launcher.YouTube.Params — if launching with contentld
Parameters:
 contentld — Video id to open
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchNetflix (String contentld, AppLaunchListener listener) Launch Netflix app. Will launch deep-linked to
provided contentld, if supported on the target platform.

Related capabilities:
¢ Launcher.Netflix
* Launcher.Netflix.Params —if launching with contentld
Parameters:
» contentld — Video id to open
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchHulu (String contentld, AppLaunchListener listener) Launch Hulu app. Will launch deep-linked to
provided contentld, if supported on the target platform.

Related capabilities:
¢ Launcher.Hulu
* Launcher.Hulu.Params — if launching with contentld
Parameters:
* contentld — Video id to open
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchAppStore (String appld, AppLaunchListener listener) Launch the device’s app store app, optionally
deep-linked to a specific app’s page.

Related capabilities:
e Launcher.AppStore
* Launcher.AppStore.Params
Parameters:
¢ appld — (optional) ID of the application to show in the app store
* listener — (optional) AppLaunchListener with methods to be called on success or failure
MediaControl getMediaControl () Get MediaControl implementation

Returns: MediaControl

5.10. API References 119

connectSDK

Capability PriorityLevel getMediaControlCapabilityLevel () Get a capability priority for current implementation

Returns: CapabilityPriorityLevel
void play (ResponseListener <Object> listener) Send play command.
Related capabilities:
* MediaControl.Play
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener) Send pause command.
Related capabilities:
* MediaControl.Pause
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (ResponseListener <Object> listener) Send play command.
Related capabilities:
e MediaControl.Stop
Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener) Send rewind command.
Related capabilities:
¢ MediaControl.Rewind
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener) Send play command.
Related capabilities:
¢ MediaControl.FastForward
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void previous (ResponseListener <Object> listener) This method is deprecated.
PlaylistControl: :previous (Responselistener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void next (ResponseListener <Object> listener) This method is deprecated.
PlaylistControl: :next (Responselistener<Object> listener) instead.

Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

Use

Use

120 Chapter 5. Promote Your TV App

connectSDK

void seek (long position, ResponseListener <Object> listener) Seeks to a new position within the current media
item

Related capabilities:
¢ MediaControl.Seek
Parameters:
* position — The new position, in milliseconds from the beginning of the stream
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getDuration (DurationListener listener) Get the current media duration in milliseconds
Parameters:
* listener — (optional) DurationListener with methods to be called on success or failure
void getPosition (PositionListener listener) Get the current playback position in milliseconds
Parameters:
* listener — (optional) PositionListener with methods to be called on success or failure
void getPlayState (PlayStateListener listener) Get the current state of playback
Parameters:
* listener — (optional) PlayStateListener with methods to be called on success or failure

ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener) Subscribe for playback
state changes

Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (MedialnfoListener listener) Parameters:
* listener — (optional) MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener) Parameters:
¢ listener — (optional) MedialnfoListener with methods to be called on success or failure

void displayImage (Medialnfo medialnfo, LaunchListener listener) Display an image on the device. Not all de-
vices support all of the parameters — supply as many as you have available.

Related capabilities:
e MediaPlayer.Display.Image
* MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description
* MediaPlayer.MediaData.Thumbnail
e MediaPlayer.MediaData.MimeType
Parameters:

» medialnfo — Object of Medialnfo class which includes all the information about an image to display.

5.10. API References 121

connectSDK

* listener — (optional) LaunchListener with methods to be called on success or failure

void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener) Play an audio or video file
on the device. Not all devices support all of the parameters — supply as many as you have available.

Related capabilities:
* MediaPlayer.Play.Video
* MediaPlayer.Play.Audio
* MediaPlayer.MediaData.Title
e MediaPlayer.MediaData.Description
e MediaPlayer.MediaData.Thumbnail
¢ MediaPlayer.MediaData.MimeType
Parameters:
» medialnfo — Object of Medialnfo class which includes all the information about an image to display.
¢ shouldLoop — Whether to automatically loop playback
* listener — (optional) LaunchListener with methods to be called on success or failure

void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener) Close a running media ses-
sion. Because media is handled differently on different platforms, it is required to keep track of LaunchSession
and MediaControl objects to control that media session in the future. LaunchSession will be required to close
the media and mediaControl will be required to control the media.

Related capabilities:
e MediaPlayer.Close
Parameters:
* launchSession — LaunchSession object for use in closing media instance
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
TVControl getTVControl ()
CapabilityPriorityLevel getTVControlCapabilityLevel ()
void channelUp (ResponseListener <Object> listener) Sends a channel up command to the TV.
Related capabilities:
e TVControl.Channel.Up
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void channelDown (ResponseListener <Object> listener) Sends a channel down command to the TV.
Related capabilities:
e TVControl.Channel.Down
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void setChannel (Channellnfo channelNumber, ResponseListener <Object> listener) Sets the current channel to
the channel provided by the Channellnfo object provided.

Related capabilities:

122 Chapter 5. Promote Your TV App

connectSDK

e TVControl.Channel.Set
Parameters:
¢ channelNumber
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getCurrentChannel (ChannelListener listener) Gets the current channel info from the TV.
Related capabilities:
e TVControl.Channel.Get
Parameters:
¢ listener — (optional) ChannelListener with methods to be called on success or failure

ServiceSubscription <ChannelListener> subscribeCurrentChannel (ChannelListener listener) Subscribes to any
changes in the current channel. Each time the channel is changed, the new channel’s info will be provided
to the success callback.

Related capabilities:
¢ TVControl.Channel.Subscribe
Parameters:
* listener — (optional) ChannelListener with methods to be called on success or failure
void getChannelList (ChannelListListener listener) Get a list of available channels from the TV.
Related capabilities:
¢ TVControl.Channel.List
Parameters:
¢ listener — (optional) ChannelListListener with methods to be called on success or failure
void getProgramInfo (ProgramlInfoListener listener) Gets the current program info from the TV.
Related capabilities:
e TVControl.Program.Get
Parameters:
* listener — (optional) ProgramInfoListener with methods to be called on success or failure

ServiceSubscription <ProgramlInfoListener> subscribeProgramlInfo (ProgramlinfoListener listener) Subscribes
to any changes in the current program. Each time the channel is changed or a new program starts, the new
program’s info will be provided to the success callback.

Related capabilities:
e TVControl.Program.Subscribe
Parameters:
* listener — (optional) ProgramInfoListener with methods to be called on success or failure

void getProgramList (ProgramlListListener listener) Gets a list of all programs scheduled to play on the current
channel.

Related capabilities:
e TVControl.Program.List

Parameters:

5.10. API References 123

connectSDK

* listener — (optional) ProgramListListener with methods to be called on success or failure

ServiceSubscription <ProgramListListener> subscribeProgramList (ProgramListListener listener) Subscribes to
any changes in the current program. Each time the channel is changed or a new program starts, the new pro-

gram’s info will be provided to the success callback.
Related capabilities:

e TVControl.Program.List.Subscribe

Parameters:
* listener — (optional) ProgramListListener with methods to be called on success or failure
void get3DEnabled (State3DModeListener listener) Gets the current 3D status of the TV.
Related capabilities:
¢ TVControl.3D.Get

Parameters:
¢ listener — (optional) State3DModeListener with methods to be called on success or failure

void set3DEnabled (boolean enabled, ResponseListener <Object> listener) Sets the current 3D status of the TV.

Related capabilities:
e TVControl.3D.Set
Parameters:
* enabled — Whether the TV’s 3D mode should be on or off

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

ServiceSubscription <State3DModeListener> subscribe3DEnabled (State3DModeListener listener) Subscribes to
changes in the TV’s 3D status.

Related capabilities:
e TVControl.3D.Subscribe
Parameters:
* listener — (optional) State3DModeListener with methods to be called on success or failure
VolumeControl getVolumeControl ()
CapabilityPriorityLevel getVolumeControlCapabilityLevel ()
void volumeUp (ResponseListener <Object> listener) Sends the volume up command to the device.
Related capabilities:
¢ VolumeControl.UpDown

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void volumeDown (ResponseListener <Object> listener) Sends the volume down command to the device.
Related capabilities:
¢ VolumeControl.UpDown

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

124 Chapter 5. Promote Your TV App

connectSDK

void setVolume (float volume, ResponseListener <Object> listener) Set the volume of the device.
Related capabilities:
¢ VolumeControl. Set
Parameters:
* volume — Volume as a float between 0.0 and 1.0
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getVolume (VolumelListener listener) Get the current volume of the device.
Related capabilities:
* VolumeControl.Get
Parameters:
* listener — (optional) VolumeListener with methods to be called on success or failure
void setMute (boolean isMute, ResponseListener <Object> listener) Set the current volume.
Related capabilities:
¢ VolumeControl.Mute.Set
Parameters:
¢ isMute
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getMute (MuteListener listener) Get the current mute state.
Related capabilities:
¢ VolumeControl.Mute.Get
Parameters:
* listener — (optional) MuteListener with methods to be called on success or failure

ServiceSubscription <VolumeListener> subscribeVolume (VolumelListener listener) Subscribe to the volume on the
TV.

Related capabilities:
* VolumeControl.Subscribe
Parameters:
* listener — (optional) VolumeListener with methods to be called on success or failure
ServiceSubscription <MuteListener> subscribeMute (MuteListener listener) Subscribe to the mute state on the TV.
Related capabilities:
* VolumeControl.Mute.Subscribe
Parameters:
* listener — (optional) MuteListener with methods to be called on success or failure
ExternallnputControl getExternallnput ()
CapabilityPriorityLevel getExternallnputControlPriorityLevel ()

5.10. API References 125

connectSDK

void launchInputPicker (AppLaunchListener listener) Launches the visual input picker on the device. This may be
helpful for situations where the device does not support directly listing/modifying the external inputs.

Related capabilities:
e ExternalInputControl.Picker.Launch
Parameters:
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void closeInputPicker (LaunchSession launchSessionm, ResponseListener <Object> listener) Closes the input
picker on the device, if it is currently open.

Related capabilities:
* ExternalInputControl.Picker.Close
Parameters:
e launchSessionm
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void getExternallnputList (ExternallnputListListener listener) Get a list of input devices (HDMI, AV, etc) con-
nected to the device

Related capabilities:
* ExternalInputControl.List
Parameters:
* listener — (optional) ExternallnputListListener with methods to be called on success or failure

void setExternallnput (Externallnputlnfo input, ResponseListener <Object> listener) Switch to the specified ex-
ternal input

Related capabilities:
* ExternalInputControl.Set
Parameters:
* input
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
MouseControl getMouseControl ()
CapabilityPriorityLevel getMouseControlCapabilityLevel ()

void connectMouse () Establish a connection with the DeviceService’s mouse communication medium (WebSocket,
HTTP, etc). While this step may not be necessary with certain platforms, it is suggested to call it anyways, for
purposes of seamless normalization. Calling connect on a non-connectable protocol will just trigger the success
callback immediately.

Related capabilities:
* MouseControl.Connect
void disconnectMouse () Disconnects from the mouse communication medium.
Related capabilities:

e MouseControl.Disconnect

126 Chapter 5. Promote Your TV App

connectSDK

void click () Perform a click action at the current mouse position.
Related capabilities:
¢ MouseControl.Click
void move (double dx, double dy) Move the mouse by the given distance values.
Related capabilities:
* MouseControl.Move
Parameters:
» dx — Distance to move the mouse on the x-axis relative to its current position
* dy — Distance to move the mouse on the y-axis relative to its current position
void scroll (double dx, double dy) Scroll by the given distance values.
Related capabilities:
* MouseControl.Scroll
Parameters:
» dx — Distance to scroll the mouse on the x-axis relative to its current position
 dy — Distance to scroll the mouse on the y-axis relative to its current position
TextInputControl getTextInputControl ()
CapabilityPriorityLevel getTextInputControlCapabilityLevel ()

ServiceSubscription <TextInputStatusListener> subscribeTextInputStatus (TextInputStatusListener listener)
Subscribe to information about the current text field.

Related capabilities:
¢ TextInputControl.Subscribe
Parameters:
* listener — (optional) TextInputStatusListener with methods to be called on success or failure
void sendText (String input) Send text to the current text field.
Related capabilities:
e TextInputControl.Send.Text
Parameters:
* input
void sendEnter () Send enter key to the current text field.
Related capabilities:
¢ TextInputControl.Send.Enter
void sendDelete () Send delete event to the current text field.
Related capabilities:
¢ TextInputControl.Send.Delete
PowerControl getPowerControl ()

CapabilityPriorityLevel getPowerControlCapabilityLevel ()

5.10. API References

127

connectSDK

void powerOff (ResponseListener <Object> listener) Sends a power off signal to the TV. A success message will,
internally, trigger a disconnection with the device.

Related capabilities:
* PowerControl.Off
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void powerOn (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
KeyControl getKeyControl ()
CapabilityPriorityLevel getKeyControlCapabilityLevel ()
void up (ResponseListener <Object> listener) Sends the up button key code to the TV.
Related capabilities:
¢ KeyControl.Up
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void down (ResponseListener <Object> listener) Sends the down button key code to the TV.
Related capabilities:
e KeyControl.Down
Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void left (ResponseListener <Object> listener) Sends the left button key code to the TV.
Related capabilities:
¢ KeyControl.Left
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void right (ResponseListener <Object> listener) Sends the right button key code to the TV.
Related capabilities:
¢ KeyControl.Right
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void ok (ResponseListener <Object> listener) Sends the OK button key code to the TV.
Related capabilities:
¢ KeyControl.OK
Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

128 Chapter 5. Promote Your TV App

connectSDK

void back (ResponseListener <Object> listener) Sends the back button key code to the TV.
Related capabilities:
¢ KeyControl.Back
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void home (ResponseListener <Object> listener) Sends the home button key code to the TV.
Related capabilities:
e KeyControl.Home
Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void sendKeyCode (KeyCode keycode, ResponseListener <Object> listener) Sends a key code value to the TV.
Related capabilities:
¢ KeyControl.Send.KeyCode
Parameters:
* keycode
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void onLoseReachability (DeviceServiceReachability reachability) Parameters:
¢ reachability
void unsubscribe (URLServiceSubscription<?> subscription) Parameters:
* subscription
void sendCommand (ServicecCommand<?> command) Parameters:

e command

RokuService

com.connectsdk.service.RokuService
extends DeviceService
RokuService provides many capabilities for Roku devices. Communication with Roku devices occurs over HTTP.
e List, launch, & close apps
¢ Media playback
* Media control
 Text input control
» Key control (fiveway)

These APIs should work on all Roku devices — they have been tested on Roku 2, Roku 3, and Roku Streaming Stick
all runnning Roku 5.3 or later.

To learn more about the Roku External Control APISs, visit the Roku External Control Guide.

5.10. API References 129

http://sdkdocs.roku.com/display/sdkdoc/External+Control+Guide

connectSDK

Properties

final String ID = “Roku”

Inner Classes

¢ RokuLaunchSession

Methods

static void register App (String appld)
Parameters:
e appld
static DiscoveryFilter discoveryFilter ()
RokuService (ServiceDescription serviceDescription, ServiceConfig serviceConfig)
Parameters:
* serviceDescription
* serviceConfig
void setServiceDescription (ServiceDescription serviceDescription)
Parameters:
* serviceDescription
CapabilityPriorityLevel getPriorityLevel (Class<?extends CapabilityMethods > clazz)
Parameters:
e clazz
Launcher getLauncher ()
CapabilityPriorityLevel getLauncherCapabilityLevel ()
void launchApp (String appld, AppLaunchListener listener)
Parameters:
 appld
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchAppWithInfo (Appinfo applnfo, Launcher. AppLaunchListener listener)
Parameters:
* applnfo

* listener — (optional) Launcher. AppLaunchListener with methods to be called on success or fail-
ure

void launchAppWithInfo (final Appinfo applnfo , Object params, final Launcher. AppLaunchListener listener)
Parameters:

* applnfo

130 Chapter 5. Promote Your TV App

connectSDK

¢ params

* listener — (optional) final Launcher.AppLaunchListener with methods to be called on success
or failure

void closeApp (LaunchSession launchSession, ResponseListener <Object> listener)
Parameters:
* launchSession
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getAppList (final AppListListener listener)
Parameters:
* listener — (optional) final AppListListener with methods to be called on success or failure
void getRunningApp (AppinfoListener listener)
Parameters:
* listener — (optional) AppInfoListener with methods to be called on success or failure
ServiceSubscription < AppInfoListener > subscribeRunningApp (AppInfoListener listener)
Parameters:
* listener — (optional) AppInfoListener with methods to be called on success or failure
void getAppState (LaunchSession launchSession, AppStateListener listener)
Parameters:
* listener — (optional) AppStateListener with methods to be called on success or failure

ServiceSubscription < AppStateListener > subscribeAppState (LaunchSession launchSession, AppStateListener lis-
tener)

Parameters:
¢ launchSession
* listener — (optional) AppStateListener with methods to be called on success or failure
void launchBrowser (String url, Launcher. AppLaunchListener listener)
Parameters:
e url

* listener — (optional) Launcher. AppLaunchListener with methods to be called on success or fail-
ure

void launchYouTube (String contentld, Launcher. AppLaunchListener listener)
Parameters:
* contentld

* listener — (optional) Launcher. AppLaunchListener with methods to be called on success or fail-
ure

void launchYouTube (String contentld, float startTime, AppLaunchListener listener)
Parameters:

e contentld

5.10. API References 131

connectSDK

* startTime
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchNetflix (final String contentld, final Launcher. AppLaunchListener listener)
Parameters:
* contentld

* listener — (optional) final Launcher.AppLaunchListener with methods to be called on success
or failure

void launchHulu (final String contentld, final Launcher. AppLaunchListener listener)
Parameters:
* contentld

* listener — (optional) final Launcher.AppLaunchListener with methods to be called on success
or failure

void launchAppStore (final String appld, AppLaunchListener listener)
Parameters:
e appld
* listener — (optional) AppLaunchListener with methods to be called on success or failure
KeyControl getKeyControl ()
CapabilityPriorityLevel getKeyControlCapabilityLevel ()
void up (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void down (final ResponseListener <Object> listener)
Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or
failure

void left (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void right (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void ok (final ResponseListener <Object> listener)
Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or
failure

void back (ResponseListener <Object> listener)

Parameters:

132 Chapter 5. Promote Your TV App

connectSDK

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void home (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
MediaControl getMediaControl ()
Get MediaControl implementation
Returns: MediaControl
CapabilityPriorityLevel getMediaControlCapabilityLevel ()
Get a capability priority for current implementation
Returns: CapabilityPriorityLevel
void play (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener)
Parameters:
* listene